Menu Close

Question-160596




Question Number 160596 by Ahmed1hamouda last updated on 03/Dec/21
Answered by Mathspace last updated on 03/Dec/21
I=∫_c   ((e^(3z) sin(2z))/((4z−jπ)^3 ))dz  with c→∣z−j∣=1  let ϕ(z)=((e^(3z) sin(2z))/((4z−jπ)^3 ))=((e^(3z) sin(2z))/(64(z−((jπ)/4))^3 ))  z=((jπ)/4)    (i take j=e^((i2π)/3) )  ∣((jπ)/4)−j∣=∣(π/4)−1∣<1 ⇒  I=2iπ Res(ϕ,((jπ)/4))  Res(ϕ,((jπ)/4))=lim_(z→((jπ)/4))   (1/((3−1)!)){(z−((jπ)/4))^3 ϕ(z)}^((2))   =lim_(z→((jπ)/4))   (1/(128)){e^(3z) sin(2z)}^((2))   =(1/(128))lim_(z→((jπ)/4))   {3e^(3z) sin(2z)+2e^(3z) cos(2z)}^((1))   =(1/(128))lim_(z→((jπ)/4))   (9e^(3z) sin(2z)+6e^(3z) cos(2z)+6e^(3z) cos(2z)−4e^(3z) sin(2z))  =(1/(128)){9e^((3jπ)/4) sin(((jπ)/2))+12e^((3jπ)/4) cos(((jπ)/2))−4e^((3jπ)/4) sin(((jπ)/2)))
I=ce3zsin(2z)(4zjπ)3dzwithc→∣zj∣=1letφ(z)=e3zsin(2z)(4zjπ)3=e3zsin(2z)64(zjπ4)3z=jπ4(itakej=ei2π3)jπ4j∣=∣π41∣<1I=2iπRes(φ,jπ4)Res(φ,jπ4)=limzjπ41(31)!{(zjπ4)3φ(z)}(2)=limzjπ41128{e3zsin(2z)}(2)=1128limzjπ4{3e3zsin(2z)+2e3zcos(2z)}(1)=1128limzjπ4(9e3zsin(2z)+6e3zcos(2z)+6e3zcos(2z)4e3zsin(2z))=1128{9e3jπ4sin(jπ2)+12e3jπ4cos(jπ2)4e3jπ4sin(jπ2))
Commented by Ahmed1hamouda last updated on 03/Dec/21
In which reference engineering mathematics is there this issue
Commented by Mathspace last updated on 03/Dec/21
complex analysis and theorem of residus
complexanalysisandtheoremofresidus
Commented by Ahmed1hamouda last updated on 03/Dec/21
What is the name of the author of this reference?

Leave a Reply

Your email address will not be published. Required fields are marked *