Menu Close

Question-160719




Question Number 160719 by mnjuly1970 last updated on 05/Dec/21
Commented by kowalsky78 last updated on 05/Dec/21
I got (3/5). Maybe I made some mistake.
Igot35.MaybeImadesomemistake.
Commented by mr W last updated on 05/Dec/21
(3/5) is the correct answer.
35isthecorrectanswer.
Answered by mr W last updated on 05/Dec/21
Commented by mr W last updated on 05/Dec/21
AB=AC=BC=x+y  AD^2 =x^2 +(x+y)^2 −2x(x+y)cos (π/3)  AD^2 =x^2 +y^2 +xy  ⇒AD=(√(x^2 +y^2 +xy))    AD=AG+GD=AF+ED  AD=(x+y−(√3)r_2 )+(y−(√3)r_2 )  AD=x+2y−2(√3)r_2   ⇒r_2 =((x+2y−AD)/(2(√3)))  ⇒r_2 =((x+2y−(√(x^2 +y^2 +xy)))/(2(√3)))  similarly  ⇒r_1 =((2x+y−(√(x^2 +y^2 +xy)))/(2(√3)))  (r_1 /r_2 )=((2x+y−(√(x^2 +y^2 +xy)))/(x+2y−(√(x^2 +y^2 +xy))))  let λ=(x/y), μ=(r_1 /r_2 )≤1  ⇒μ=((2λ+1−(√(λ^2 +λ+1)))/(λ+2−(√(λ^2 +λ+1))))  (2−μ)λ+1−2μ=(1−μ)(√(λ^2 +λ+1))  (2−μ)^2 λ^2 +(1−2μ)^2 +2(2−μ)(1−2μ)λ=(1−μ)^2 (λ^2 +λ+1)  (3−2μ)λ^2 +(3μ^2 −8μ+3)λ+(3μ−2)μ=0  λ=((−(3μ^2 −8μ+3)+(√((3μ^2 −8μ+3)^2 −4(3−2μ)(3μ−2)μ)))/(2(3−2μ)))  ⇒λ=((8μ−3(1+μ^2 )+(1−μ)(√(3(3μ^2 −2μ+3))))/(2(3−2μ)))  with μ=(r_1 /r_2 )=(2/3)  ⇒λ=(x/y)=(3/5)
AB=AC=BC=x+yAD2=x2+(x+y)22x(x+y)cosπ3AD2=x2+y2+xyAD=x2+y2+xyAD=AG+GD=AF+EDAD=(x+y3r2)+(y3r2)AD=x+2y23r2r2=x+2yAD23r2=x+2yx2+y2+xy23similarlyr1=2x+yx2+y2+xy23r1r2=2x+yx2+y2+xyx+2yx2+y2+xyletλ=xy,μ=r1r21μ=2λ+1λ2+λ+1λ+2λ2+λ+1(2μ)λ+12μ=(1μ)λ2+λ+1(2μ)2λ2+(12μ)2+2(2μ)(12μ)λ=(1μ)2(λ2+λ+1)(32μ)λ2+(3μ28μ+3)λ+(3μ2)μ=0λ=(3μ28μ+3)+(3μ28μ+3)24(32μ)(3μ2)μ2(32μ)λ=8μ3(1+μ2)+(1μ)3(3μ22μ+3)2(32μ)withμ=r1r2=23λ=xy=35
Commented by mnjuly1970 last updated on 05/Dec/21
grateful sir  W
gratefulsirW
Commented by mr W last updated on 05/Dec/21
Commented by Tawa11 last updated on 05/Dec/21
Great sir.
Greatsir.

Leave a Reply

Your email address will not be published. Required fields are marked *