Menu Close

Question-160806




Question Number 160806 by HongKing last updated on 06/Dec/21
Answered by MJS_new last updated on 06/Dec/21
A=0∨A=5    y=A−x  x^3 +(A−x)^3 =5x(A−x)  (3A+5)x^2 −A(3A+5)x+A^3 =0  x=(A/2)±((A(√(5−A)))/(2(√(3A+5))))  one solution if ((A(√(5−A)))/(2(√(3A+5))))=0 ⇒ A=0∨A=5
$${A}=\mathrm{0}\vee{A}=\mathrm{5} \\ $$$$ \\ $$$${y}={A}−{x} \\ $$$${x}^{\mathrm{3}} +\left({A}−{x}\right)^{\mathrm{3}} =\mathrm{5}{x}\left({A}−{x}\right) \\ $$$$\left(\mathrm{3}{A}+\mathrm{5}\right){x}^{\mathrm{2}} −{A}\left(\mathrm{3}{A}+\mathrm{5}\right){x}+{A}^{\mathrm{3}} =\mathrm{0} \\ $$$${x}=\frac{{A}}{\mathrm{2}}\pm\frac{{A}\sqrt{\mathrm{5}−{A}}}{\mathrm{2}\sqrt{\mathrm{3}{A}+\mathrm{5}}} \\ $$$$\mathrm{one}\:\mathrm{solution}\:\mathrm{if}\:\frac{{A}\sqrt{\mathrm{5}−{A}}}{\mathrm{2}\sqrt{\mathrm{3}{A}+\mathrm{5}}}=\mathrm{0}\:\Rightarrow\:{A}=\mathrm{0}\vee{A}=\mathrm{5} \\ $$
Commented by HongKing last updated on 06/Dec/21
cool thank you so much my dear Sir
$$\mathrm{cool}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *