Menu Close

Question-160821




Question Number 160821 by mathlove last updated on 07/Dec/21
Commented by Mathematification last updated on 07/Dec/21
Ln(x/(Ln(x/(Ln(x/(Ln ....))))))  =  e   Ln(x/e) = e  Ln(x) − Ln(e) = e   Ln(x) = e + 1   x = e^(e+1 )    Solution by : Emperor Gideon
$${Ln}\frac{{x}}{{Ln}\frac{{x}}{{Ln}\frac{{x}}{{Ln}\:….}}}\:\:=\:\:{e}\: \\ $$$${Ln}\frac{{x}}{{e}}\:=\:{e} \\ $$$${Ln}\left({x}\right)\:−\:{Ln}\left({e}\right)\:=\:{e}\: \\ $$$${Ln}\left({x}\right)\:=\:{e}\:+\:\mathrm{1}\: \\ $$$${x}\:=\:{e}^{{e}+\mathrm{1}\:} \: \\ $$Solution by : Emperor Gideon
Answered by Raxreedoroid last updated on 07/Dec/21
e=ln (x/(ln (x/(ln (x/(...))))))  e=ln (x/e)  e=ln (x) −1  x=e^(e+1)
$${e}=\mathrm{ln}\:\frac{{x}}{\mathrm{ln}\:\frac{{x}}{\mathrm{ln}\:\frac{{x}}{…}}} \\ $$$${e}=\mathrm{ln}\:\frac{{x}}{{e}} \\ $$$${e}=\mathrm{ln}\:\left({x}\right)\:−\mathrm{1} \\ $$$${x}={e}^{{e}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *