Menu Close

Question-160839




Question Number 160839 by amin96 last updated on 07/Dec/21
Commented by amin96 last updated on 07/Dec/21
yellow area=?
yellowarea=?
Answered by mr W last updated on 08/Dec/21
Commented by mr W last updated on 08/Dec/21
Method I (not so smart one)  ((AB)/(sin (α+60)))=(2/(sin (α+30)))  AB=((2 sin (α+60))/(sin (α+30)))  ((DB)/(sin α))=(2/(sin (α+30)))  DB=((2 sin α)/(sin (α+30)))  S_1 =(1/2)×2×((2 sin (α+60))/(sin (α+30)))×sin 30=((sin (α+60))/(sin (α+30)))  S_2 =(1/2)×2×((2 sin α)/(sin (α+30)))×sin 30=((sin α)/(sin (α+30)))  S_(yellow) =((sin (α+60)+sin α)/(sin (α+30)))  =((sin (α+30+30)+sin (α+30−30))/(sin (α+30)))  =((2 sin (α+30) cos 30)/(sin (α+30)))  =2 cos 30=(√3)
MethodI(notsosmartone)ABsin(α+60)=2sin(α+30)AB=2sin(α+60)sin(α+30)DBsinα=2sin(α+30)DB=2sinαsin(α+30)S1=12×2×2sin(α+60)sin(α+30)×sin30=sin(α+60)sin(α+30)S2=12×2×2sinαsin(α+30)×sin30=sinαsin(α+30)Syellow=sin(α+60)+sinαsin(α+30)=sin(α+30+30)+sin(α+3030)sin(α+30)=2sin(α+30)cos30sin(α+30)=2cos30=3
Commented by Tawa11 last updated on 08/Dec/21
Great sir.
Greatsir.
Answered by mr W last updated on 08/Dec/21
Commented by mr W last updated on 08/Dec/21
Method II  make ΔDEA=ΔCDB as shown  yellow area=area of trapazoid ABDE  DE//BA  BD=AE  BE=AD=2  area of trapazoid=((AD×BE×sin 60)/2)  =2 sin 60=(√3)
MethodIImakeΔDEA=ΔCDBasshownyellowarea=areaoftrapazoidABDEDE//BABD=AEBE=AD=2areaoftrapazoid=AD×BE×sin602=2sin60=3
Commented by Ari last updated on 09/Dec/21
Mr.Why area of trapezoid is (AD*BE*sin60)/2.This fomule is true for each trapezoid?
Commented by mr W last updated on 09/Dec/21
it′s true for any convex quadrilateral!  A=((diagonal 1×diagonal 2×sin θ)/2)
itstrueforanyconvexquadrilateral!A=diagonal1×diagonal2×sinθ2
Commented by Ari last updated on 09/Dec/21
ok,thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *