Menu Close

Question-160873




Question Number 160873 by SANOGO last updated on 08/Dec/21
Answered by TheSupreme last updated on 08/Dec/21
1) ∫_0 ^∞ (1/a^2 )(dx/(1+((x/a))^2 ))=(1/a)arctan(x/a)=(π/(2a))
1)01a2dx1+(xa)2=1aarctanxa=π2a
Commented by SANOGO last updated on 08/Dec/21
merci vu stp le reste
mercivustplereste
Answered by puissant last updated on 13/Dec/21
2−c)  ∫_(−∞) ^(+∞) (dt/(1+t^2 )) = 2∫_0 ^∞ (dt/(1+t^2 )) = 2[arctan(t)]_0 ^∞ =π.  3.  ∫_0 ^∞ (e^(−u) /( (√u))) du ;   posons  u=t^2  ⇒ du=2tdt  ⇒ ∫_0 ^∞ (e^(−t^2 ) /t)2tdt = 2∫_0 ^∞ e^(−t^2 ) dt..
2c)+dt1+t2=20dt1+t2=2[arctan(t)]0=π.3.0euudu;posonsu=t2du=2tdt0et2t2tdt=20et2dt..

Leave a Reply

Your email address will not be published. Required fields are marked *