Menu Close

Question-160894




Question Number 160894 by HongKing last updated on 08/Dec/21
Answered by Kamel last updated on 09/Dec/21
a_(n+1) =a_(n+2) −a_(n+3) +a_n −a_(n+1)   a_1 +Σ_(k=1) ^(2021) a_(n+1) =a_3 −a_(2024) +2a_1 −a_(2022) =2+2+4−3=5  a_(2024) =a_(2023) −2a_(2022) +a_(2021) =−a_(2021) −a_(2022) +a_(2020)
$${a}_{{n}+\mathrm{1}} ={a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{3}} +{a}_{{n}} −{a}_{{n}+\mathrm{1}} \\ $$$${a}_{\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{2021}} {\sum}}{a}_{{n}+\mathrm{1}} ={a}_{\mathrm{3}} −{a}_{\mathrm{2024}} +\mathrm{2}{a}_{\mathrm{1}} −{a}_{\mathrm{2022}} =\mathrm{2}+\mathrm{2}+\mathrm{4}−\mathrm{3}=\mathrm{5} \\ $$$${a}_{\mathrm{2024}} ={a}_{\mathrm{2023}} −\mathrm{2}{a}_{\mathrm{2022}} +{a}_{\mathrm{2021}} =−{a}_{\mathrm{2021}} −{a}_{\mathrm{2022}} +{a}_{\mathrm{2020}} \\ $$
Commented by HongKing last updated on 10/Dec/21
thank you so mych dear Sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{mych}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *