Menu Close

Question-161079




Question Number 161079 by 0731619 last updated on 11/Dec/21
Commented by mr W last updated on 11/Dec/21
must >0 and <1, therefore only (1/(16))  can be, if one answer should be true.
$${must}\:>\mathrm{0}\:{and}\:<\mathrm{1},\:{therefore}\:{only}\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$${can}\:{be},\:{if}\:{one}\:{answer}\:{should}\:{be}\:{true}. \\ $$
Commented by 0731619 last updated on 11/Dec/21
solution sir?
$${solution}\:{sir}? \\ $$
Commented by infinityaction last updated on 23/Apr/22
use formula  (1/4)cos 3x =cos (60−x)cos (x)cos (60+x)   put x=25  (1/4)cos 75 = cos 35cos 25cos 85  p = cos 15((1/4)cos 75)  p = (2/8)cos 15sin 15  p = (1/8)×sin 30  p = (1/(16))
$${use}\:{formula} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{3}{x}\:=\mathrm{cos}\:\left(\mathrm{60}−{x}\right)\mathrm{cos}\:\left({x}\right)\mathrm{cos}\:\left(\mathrm{60}+{x}\right) \\ $$$$\:{put}\:{x}=\mathrm{25} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{75}\:=\:\mathrm{cos}\:\mathrm{35cos}\:\mathrm{25cos}\:\mathrm{85} \\ $$$${p}\:=\:\mathrm{cos}\:\mathrm{15}\left(\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{75}\right) \\ $$$${p}\:=\:\frac{\mathrm{2}}{\mathrm{8}}\mathrm{cos}\:\mathrm{15sin}\:\mathrm{15} \\ $$$${p}\:=\:\frac{\mathrm{1}}{\mathrm{8}}×\mathrm{sin}\:\mathrm{30} \\ $$$${p}\:=\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$ \\ $$$$ \\ $$
Answered by TheSupreme last updated on 11/Dec/21
(1/4)[cos40+cos(10)][cos(50)+cos(120)]=  =(1/4)[cos(40)cos(50)+cos(10)cos(50)−(1/2)cos(40)−(1/2)cos(10)]  =(1/4)[(1/2)(cos(90)+cos(10))+(1/2)(cos(60)+cos(40))−(1/2)(cos(10)+cos(40)]  (1/4)[(1/2)cos(60)]=(1/(16))
$$\frac{\mathrm{1}}{\mathrm{4}}\left[{cos}\mathrm{40}+{cos}\left(\mathrm{10}\right)\right]\left[{cos}\left(\mathrm{50}\right)+{cos}\left(\mathrm{120}\right)\right]= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[{cos}\left(\mathrm{40}\right){cos}\left(\mathrm{50}\right)+{cos}\left(\mathrm{10}\right){cos}\left(\mathrm{50}\right)−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{40}\right)−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{10}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{90}\right)+{cos}\left(\mathrm{10}\right)\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{60}\right)+{cos}\left(\mathrm{40}\right)\right)−\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{10}\right)+{cos}\left(\mathrm{40}\right)\right]\right. \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{60}\right)\right]=\frac{\mathrm{1}}{\mathrm{16}} \\ $$
Commented by mr W last updated on 12/Dec/21
good sir! thanks!
$${good}\:{sir}!\:{thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *