Menu Close

Question-161241




Question Number 161241 by help last updated on 14/Dec/21
Answered by mr W last updated on 15/Dec/21
let y=xt  y′=t+x(dt/dx)=((t^2 −1)/t)  x(dt/dx)=((t^2 −1)/t)−t=−(1/t)  tdt=−(dx/x)  (t^2 /2)=−ln Cx  (y^2 /(2x^2 ))=−ln Cx  ⇒y^2 =−2x^2 ln Cx
$${let}\:{y}={xt} \\ $$$${y}'={t}+{x}\frac{{dt}}{{dx}}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}} \\ $$$${x}\frac{{dt}}{{dx}}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}}−{t}=−\frac{\mathrm{1}}{{t}} \\ $$$${tdt}=−\frac{{dx}}{{x}} \\ $$$$\frac{{t}^{\mathrm{2}} }{\mathrm{2}}=−\mathrm{ln}\:{Cx} \\ $$$$\frac{{y}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} }=−\mathrm{ln}\:{Cx} \\ $$$$\Rightarrow{y}^{\mathrm{2}} =−\mathrm{2}{x}^{\mathrm{2}} \mathrm{ln}\:{Cx} \\ $$
Answered by yeti123 last updated on 15/Dec/21
(dy/dx) = ((y^2  − x^2 )/(xy))  (dy/dx) −x^(−1) y = −xy^(−1)  ....(1)  let z = y^2  ⇒ (dz/dx) = 2y(dy/dx)  (1) ⇒  2y(dy/dx) − 2y^2 x^(−1)  = −2x  (dz/dx) − 2zx^(−1)  = −2x  x^(−2) (dz/dx) − 2zx^(−3)  = −2x^(−1)   (d/dx)(zx^(−2) ) = −2x^(−1)   zx^(−2)  = −2ln(x) + c  z = x^2 {−2ln(x) + c}  y^2  = x^2 {−2ln(x) + c}
$$\frac{{dy}}{{dx}}\:=\:\frac{{y}^{\mathrm{2}} \:−\:{x}^{\mathrm{2}} }{{xy}} \\ $$$$\frac{{dy}}{{dx}}\:−{x}^{−\mathrm{1}} {y}\:=\:−{xy}^{−\mathrm{1}} \:….\left(\mathrm{1}\right) \\ $$$$\mathrm{let}\:{z}\:=\:{y}^{\mathrm{2}} \:\Rightarrow\:\frac{{dz}}{{dx}}\:=\:\mathrm{2}{y}\frac{{dy}}{{dx}} \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}\:−\:\mathrm{2}{y}^{\mathrm{2}} {x}^{−\mathrm{1}} \:=\:−\mathrm{2}{x} \\ $$$$\frac{{dz}}{{dx}}\:−\:\mathrm{2}{zx}^{−\mathrm{1}} \:=\:−\mathrm{2}{x} \\ $$$${x}^{−\mathrm{2}} \frac{{dz}}{{dx}}\:−\:\mathrm{2}{zx}^{−\mathrm{3}} \:=\:−\mathrm{2}{x}^{−\mathrm{1}} \\ $$$$\frac{{d}}{{dx}}\left({zx}^{−\mathrm{2}} \right)\:=\:−\mathrm{2}{x}^{−\mathrm{1}} \\ $$$${zx}^{−\mathrm{2}} \:=\:−\mathrm{2ln}\left({x}\right)\:+\:{c} \\ $$$${z}\:=\:{x}^{\mathrm{2}} \left\{−\mathrm{2ln}\left({x}\right)\:+\:{c}\right\} \\ $$$${y}^{\mathrm{2}} \:=\:{x}^{\mathrm{2}} \left\{−\mathrm{2ln}\left({x}\right)\:+\:{c}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *