Menu Close

Question-161296




Question Number 161296 by amin96 last updated on 15/Dec/21
Answered by mr W last updated on 16/Dec/21
A(p^2 ,p)  C(q^2 ,q)  tan θ=(dy/dx)=(1/(2(√x)))=(1/(2p))=1  ⇒p=(1/2)  BC=q−p=((AB)/2)=((q^2 −p^2 )/2)  ((q+p)/2)=1  ⇒q=2−p=(3/2)  BC=q−p=(3/2)−(1/2)=1
$${A}\left({p}^{\mathrm{2}} ,{p}\right) \\ $$$${C}\left({q}^{\mathrm{2}} ,{q}\right) \\ $$$$\mathrm{tan}\:\theta=\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}=\frac{\mathrm{1}}{\mathrm{2}{p}}=\mathrm{1} \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${BC}={q}−{p}=\frac{{AB}}{\mathrm{2}}=\frac{{q}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{q}+{p}}{\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow{q}=\mathrm{2}−{p}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${BC}={q}−{p}=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1} \\ $$
Commented by mr W last updated on 15/Dec/21

Leave a Reply

Your email address will not be published. Required fields are marked *