Menu Close

Question-161668




Question Number 161668 by mnjuly1970 last updated on 21/Dec/21
Answered by mr W last updated on 21/Dec/21
((sin^2  x)/(1−sin^2  x))=1+sin^2  x  sin^4  x+sin^2  x−1=0  sin^2  x=((−1+(√5))/2)=φ  4 sin^2  (x/2)(1−sin^2  (x/2))=φ  sin^4  (x/2)−sin^2  (x/2)+(φ/4)=0  sin^2  (x/2)=((1±(√(1−φ)))/2)  (sin^2  (x/2))_(max) =((1+(√(1−φ)))/2)  =((1+(√((3−(√5))/2)))/2)=(1/2)+((√(6−2(√5)))/4)=(1/2)+(((√5)−1)/4)=(((√5)+1)/2)    ((√(6−2(√5)))/4)=((√(6−(√(20))))/4)  ⇒answer (3) is correct:
sin2x1sin2x=1+sin2xsin4x+sin2x1=0sin2x=1+52=ϕ4sin2x2(1sin2x2)=ϕsin4x2sin2x2+ϕ4=0sin2x2=1±1ϕ2(sin2x2)max=1+1ϕ2=1+3522=12+6254=12+514=5+126254=6204answer(3)iscorrect:
Commented by mnjuly1970 last updated on 21/Dec/21
geateful sir W...very excellent
geatefulsirWveryexcellent

Leave a Reply

Your email address will not be published. Required fields are marked *