Question Number 161733 by Tawa11 last updated on 21/Dec/21
Answered by FongXD last updated on 21/Dec/21
$$\:\:\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the}\:\mathrm{point}\:\mathrm{where}\:\mathrm{the}\:\mathrm{2} \:\mathrm{intersect} \\ $$$$\:\:\:\mathrm{let}\:\mathrm{T}\in\left(\mathrm{QR}\right),\:\mathrm{where}\:\left(\mathrm{PT}\right)\bot\left(\mathrm{QR}\right) \\ $$$$\bullet\:\mathrm{in}\:\mathrm{the}\:\mathrm{right}\:\mathrm{triangle}\:\mathrm{PQT} \\ $$$$\mathrm{we}\:\mathrm{have}:\:\mathrm{PQ}^{\mathrm{2}} =\mathrm{PT}^{\mathrm{2}} +\mathrm{TQ}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{PT}=\sqrt{\left(\mathrm{3}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\bullet\:\mathrm{cos}\left(\angle\mathrm{OQR}\right)=\frac{\mathrm{TQ}}{\mathrm{PQ}}=\frac{\mathrm{3}−\mathrm{1}}{\mathrm{3}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}},\:\Rightarrow\:\angle\mathrm{OQR}=\frac{\pi}{\mathrm{3}} \\ $$$$\bullet\:\angle\mathrm{QPT}=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{6}},\:\Rightarrow\:\angle\mathrm{OPS}=\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{6}}=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{PQRS}=\frac{\left(\mathrm{PS}+\mathrm{QR}\right)\mathrm{PT}}{\mathrm{2}}=\frac{\left(\mathrm{1}+\mathrm{3}\right)×\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{4}\sqrt{\mathrm{3}}\:\:\:\left(\mathrm{1}\right) \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{sector}\:\mathrm{OQR}=\frac{\angle\mathrm{OQR}}{\mathrm{2}}×\mathrm{R}^{\mathrm{2}} =\frac{\pi}{\mathrm{6}}×\mathrm{3}^{\mathrm{2}} =\frac{\mathrm{3}\pi}{\mathrm{2}}\:\:\:\left(\mathrm{2}\right) \\ $$$$\bullet\:\mathrm{Area}\:\mathrm{of}\:\mathrm{sector}\:\mathrm{OPS}=\frac{\angle\mathrm{OPS}}{\mathrm{2}}×\mathrm{r}^{\mathrm{2}} =\frac{\pi}{\mathrm{3}}\:\:\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{region}=\left(\mathrm{1}\right)−\left(\mathrm{2}\right)−\left(\mathrm{3}\right) \\ $$$$=\mathrm{4}\sqrt{\mathrm{3}}−\frac{\mathrm{3}\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}=\mathrm{4}\sqrt{\mathrm{3}}−\frac{\mathrm{11}\pi}{\mathrm{6}} \\ $$
Commented by Tawa11 last updated on 21/Dec/21
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$