Question Number 162100 by amin96 last updated on 26/Dec/21
Commented by mr W last updated on 27/Dec/21
$$\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}=\frac{\mathrm{2}\left(\boldsymbol{{R}}β\boldsymbol{{r}}\right)}{\boldsymbol{{R}}+\boldsymbol{{r}}} \\ $$
Answered by mr W last updated on 27/Dec/21
Commented by mr W last updated on 27/Dec/21
$$\mathrm{2}{p}+\mathrm{2}{r}=\mathrm{2}{R}\:\Rightarrow{p}={R}β{r} \\ $$$${BC}={R}β{r} \\ $$$${CD}={R}β{p}={R}β\left({R}β{r}\right)={r} \\ $$$${BE}={r}+{q} \\ $$$${CE}={R}β{q} \\ $$$${DE}={p}+{q}={R}β{r}+{q} \\ $$$$\frac{{BC}^{\mathrm{2}} +{CE}^{\mathrm{2}} β{BE}^{\mathrm{2}} }{\mathrm{2}Γ{BC}Γ{CE}}=β\frac{{CD}^{\mathrm{2}} +{CE}^{\mathrm{2}} β{DE}^{\mathrm{2}} }{\mathrm{2}Γ{CD}Γ{CE}} \\ $$$$\frac{\left({R}β{r}\right)^{\mathrm{2}} +\left({R}β{q}\right)^{\mathrm{2}} β\left({r}+{q}\right)^{\mathrm{2}} }{{R}β{r}}=β\frac{{r}^{\mathrm{2}} +\left({R}β{q}\right)^{\mathrm{2}} β\left({R}β{r}+{q}\right)^{\mathrm{2}} }{{r}} \\ $$$$\frac{{R}^{\mathrm{2}} β{Rr}β\left({R}+{r}\right){q}}{{R}β{r}}=β\frac{{Rr}β\left(\mathrm{2}{R}β{r}\right){q}}{{r}} \\ $$$$\left({R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} \right){q}=\left({R}β{r}\right){Rr} \\ $$$$\Rightarrow{q}=\frac{\left({R}β{r}\right){Rr}}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} } \\ $$$${BC}+{CE}+{EB}=\left({R}β{r}\right)+\left({R}β{q}\right)+\left({r}+{q}\right)=\mathrm{2}{R} \\ $$$$β{BC}+{CE}+{EB}=β\left({R}β{r}\right)+\left({R}β{q}\right)+\left({r}+{q}\right)=\mathrm{2}{r} \\ $$$${BC}β{CE}+{EB}=\left({R}β{r}\right)β\left({R}β{q}\right)+\left({r}+{q}\right)=\mathrm{2}{q} \\ $$$${BC}+{CE}β{EB}=\left({R}β{r}\right)+\left({R}β{q}\right)β\left({r}+{q}\right)=\mathrm{2}\left({R}β{r}β{q}\right) \\ $$$$\Delta_{{BCE}} =\frac{\sqrt{\mathrm{2}{R}Γ\mathrm{2}{r}Γ\mathrm{2}{q}Γ\mathrm{2}\left({R}β{r}β{q}\right)}}{\mathrm{4}}=\sqrt{{Rrq}\left({R}β{r}β{q}\right)} \\ $$$$\Delta_{{BCE}} =\frac{{BC}Γ{h}}{\mathrm{2}} \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}\sqrt{{Rrq}\left({R}β{r}β{q}\right)}}{{R}β{r}}=\frac{\mathrm{2}\left({R}β{r}\right){Rr}}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} }=\mathrm{2}{q} \\ $$$$\sqrt{{BE}^{\mathrm{2}} β{h}^{\mathrm{2}} }=\sqrt{\left({r}+{q}\right)^{\mathrm{2}} β\mathrm{4}{q}^{\mathrm{2}} }=\sqrt{\left({r}+\mathrm{3}{q}\right)\left({r}β{q}\right)} \\ $$$$\mathrm{tan}\:\alpha=\frac{{h}}{{AB}+\sqrt{{BE}^{\mathrm{2}} β{h}^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{2}{q}}{{r}+\sqrt{\left({r}+\mathrm{3}{q}\right)\left({r}β{q}\right)}} \\ $$$$=\frac{\mathrm{2}{q}}{{r}+\sqrt{\left({r}+\frac{\mathrm{3}\left({R}β{r}\right){Rr}}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} }\right)\left({r}β\frac{\left({R}β{r}\right){Rr}}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} }\right)}} \\ $$$$=\frac{\mathrm{2}}{{r}+\frac{{r}^{\mathrm{2}} \left(\mathrm{2}{R}β{r}\right)}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} }}Γ\frac{\left({R}β{r}\right){Rr}}{{R}^{\mathrm{2}} β{Rr}+{r}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\left({R}β{r}\right)}{{R}+{r}} \\ $$$${check}\:{for}\:{special}\:{case}\:{R}=\mathrm{2}{r}: \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}\left(\mathrm{2}{r}β{r}\right)}{\mathrm{2}{r}+{r}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$$$\left({r}+{q}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\left(\mathrm{2}{r}β{q}\right)^{\mathrm{2}} \\ $$$${q}=\frac{\mathrm{2}{r}}{\mathrm{3}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}{r}β{q}}{\mathrm{2}{r}}=\frac{\mathrm{2}{r}β\frac{\mathrm{2}{r}}{\mathrm{3}}}{\mathrm{2}{r}}=\frac{\mathrm{2}}{\mathrm{3}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 27/Dec/21
$$\mathrm{Great}\:\mathrm{sir}.\:\mathrm{Am}\:\mathrm{always}\:\mathrm{gaining}\:\mathrm{from}\:\mathrm{your}\:\mathrm{geometry}\:\mathrm{solution}. \\ $$
Commented by Tawa11 last updated on 27/Dec/21
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir} \\ $$