Menu Close

Question-16220




Question Number 16220 by Mr easymsn last updated on 19/Jun/17
Answered by liday last updated on 19/Jun/17
let x^((3/2)n) =a then 8a+(8/a)=63 ⇒8a^2 −63a+8=0  a=((63±(√(63^2 −4×8×8)))/(16))=((63±(√(3713)))/(16))  ⇒x^((3/2)n) =((63±(√(3713)))/(16))⇒x=((((63±(√(3713)))/(16)))^(1/3) )^(2/n)
$$\mathrm{let}\:\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}} =\mathrm{a}\:\mathrm{then}\:\mathrm{8a}+\frac{\mathrm{8}}{\mathrm{a}}=\mathrm{63}\:\Rightarrow\mathrm{8a}^{\mathrm{2}} −\mathrm{63a}+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{a}=\frac{\mathrm{63}\pm\sqrt{\mathrm{63}^{\mathrm{2}} −\mathrm{4}×\mathrm{8}×\mathrm{8}}}{\mathrm{16}}=\frac{\mathrm{63}\pm\sqrt{\mathrm{3713}}}{\mathrm{16}} \\ $$$$\Rightarrow\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}} =\frac{\mathrm{63}\pm\sqrt{\mathrm{3713}}}{\mathrm{16}}\Rightarrow\mathrm{x}=\left(\sqrt[{\mathrm{3}}]{\frac{\mathrm{63}\pm\sqrt{\mathrm{3713}}}{\mathrm{16}}}\right)^{\frac{\mathrm{2}}{\mathrm{n}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *