Menu Close

Question-162396




Question Number 162396 by Mathematification last updated on 29/Dec/21
Commented by Mathematification last updated on 29/Dec/21
Thank you so much. But how do we know   when to apply the formula?
$${Thank}\:{you}\:{so}\:{much}.\:{But}\:{how}\:{do}\:{we}\:{know}\: \\ $$$${when}\:{to}\:{apply}\:{the}\:{formula}? \\ $$
Answered by mr W last updated on 29/Dec/21
r_(red) =(1/((1/1)+(1/2)+(1/3)+2(√((1/(1×2))+(1/(2×3))+(1/(3×1))))))  r_(red) =(6/(23))  A_(red) =((36π)/(529))
$${r}_{{red}} =\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{2}\sqrt{\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{1}}}} \\ $$$${r}_{{red}} =\frac{\mathrm{6}}{\mathrm{23}} \\ $$$${A}_{{red}} =\frac{\mathrm{36}\pi}{\mathrm{529}} \\ $$
Commented by Tawa11 last updated on 29/Dec/21
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 29/Dec/21
Commented by mr W last updated on 29/Dec/21
r,R=(1/((1/a)+(1/b)+(1/c)±2(√((1/(ab))+(1/(bc))+(1/(ca))))))  + for r  − for R
$${r},{R}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\pm\mathrm{2}\sqrt{\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ca}}}} \\ $$$$+\:{for}\:{r} \\ $$$$−\:{for}\:{R} \\ $$
Commented by mr W last updated on 29/Dec/21
see Q77681 for more details
$${see}\:{Q}\mathrm{77681}\:{for}\:{more}\:{details} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *