Menu Close

Question-162561




Question Number 162561 by Mathematification last updated on 30/Dec/21
Answered by MJS_new last updated on 30/Dec/21
we have to find the minimum value of ∣AB∣  with A= ((p),(p^2 ) ) and B= ((q),((ln q)) ) . this can only  be approximated. I get  p≈.538167  q≈.929078  ∣AB∣=d≈.533588  from the parallel tangents we get q=(1/(2p)) ⇒  now it′s easier to approximate  p≈.538167720574  q≈.929078391150  d≈.533587574933
wehavetofindtheminimumvalueofABwithA=(pp2)andB=(qlnq).thiscanonlybeapproximated.Igetp.538167q.929078AB∣=d.533588fromtheparalleltangentswegetq=12pnowitseasiertoapproximatep.538167720574q.929078391150d.533587574933
Answered by mr W last updated on 30/Dec/21
point on y=x^2 : P(p,p^2 )  point on y=ln x: Q(q,ln q)  we should find P, Q such that PQ  is minimum.  S=PQ^2 =(p−q)^2 +(p^2 −ln q)^2   (∂S/∂p)=2(p−q)+4(p^2 −ln q)p=0  ⇒(p−q)+2(p^2 −ln q)p=0   ...(i)  (∂S/∂q)=−2(p−q)−2(p^2 −ln q)(1/q)=0  ⇒(p−q)q+(p^2 −ln q)=0   ...(ii)  (i)−(ii)×2p:  (p−q)(1−2pq)=0  ⇒1−2pq=0 ⇒q=(1/(2p))  (p−(1/(2p)))+2p(p^2 −ln (1/(2p)))=0  p^2 (2p^2 +1+2ln 2p)=(1/2)  ⇒p≈0.5382  ⇒PQ_(min) =d_(max) ≈0.5336
pointony=x2:P(p,p2)pointony=lnx:Q(q,lnq)weshouldfindP,QsuchthatPQisminimum.S=PQ2=(pq)2+(p2lnq)2Sp=2(pq)+4(p2lnq)p=0(pq)+2(p2lnq)p=0(i)Sq=2(pq)2(p2lnq)1q=0(pq)q+(p2lnq)=0(ii)(i)(ii)×2p:(pq)(12pq)=012pq=0q=12p(p12p)+2p(p2ln12p)=0p2(2p2+1+2ln2p)=12p0.5382PQmin=dmax0.5336
Commented by mr W last updated on 30/Dec/21
Commented by mr W last updated on 30/Dec/21
Commented by Tawa11 last updated on 30/Dec/21
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *