Menu Close

Question-162589




Question Number 162589 by mkam last updated on 30/Dec/21
Answered by Ar Brandon last updated on 30/Dec/21
T=cosϑcos2ϑcos4ϑ...cos(2^(n−1) ϑ)  2sinϑT=sin2ϑcos2ϑcos4ϑ...cos(2^(n−1) ϑ)  4sinϑT=sin4ϑ...cos(2^(n−1) ϑ)  2^n sinϑT=sin(2^n ϑ)  T=(1/2^n )∙((sin(2^n ϑ))/(sinϑ)) , ϑ=(π/(2^n +1))  T=(1/2^n )∙((sin((2^n /(2^n +1))π))/(sin((1/(2^n +1))π)))=(1/2^n )∙((sin(π−(π/(2^n +1))))/(sin((π/(2^n +1)))))  T=(1/2^n )∙((sin((π/(2^n +1))))/(sin((π/(2^n +1)))))=(1/2^n )  , sin(π−t)=sin(t)
T=cosϑcos2ϑcos4ϑcos(2n1ϑ)2sinϑT=sin2ϑcos2ϑcos4ϑcos(2n1ϑ)4sinϑT=sin4ϑcos(2n1ϑ)2nsinϑT=sin(2nϑ)T=12nsin(2nϑ)sinϑ,ϑ=π2n+1T=12nsin(2n2n+1π)sin(12n+1π)=12nsin(ππ2n+1)sin(π2n+1)T=12nsin(π2n+1)sin(π2n+1)=12n,sin(πt)=sin(t)
Commented by peter frank last updated on 31/Dec/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *