Question Number 162785 by john_santu last updated on 01/Jan/22
Answered by Rasheed.Sindhi last updated on 02/Jan/22
$$ \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}=\left({x}−\mathrm{1}\right)+\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)} \\ $$$$\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}=\frac{{A}_{\mathrm{1}} }{{x}}+\frac{{A}_{\mathrm{2}} }{{x}^{\mathrm{2}} }+\frac{{B}}{{x}+\mathrm{1}} \\ $$$${A}_{\mathrm{1}} {x}\left({x}+\mathrm{1}\right)+{A}_{\mathrm{2}} \left({x}+\mathrm{1}\right)+{Bx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$${x}=\mathrm{0}:{A}_{\mathrm{2}} \left(\mathrm{0}+\mathrm{1}\right)=\mathrm{0}^{\mathrm{2}} +\mathrm{2}.\mathrm{0}+\mathrm{5}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{A}_{\mathrm{2}} =\mathrm{5} \\ $$$${x}=−\mathrm{1}:{B}\left(−\mathrm{1}\right)^{\mathrm{2}} =\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left(−\mathrm{1}\right)+\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{B}=\mathrm{4} \\ $$$${A}_{\mathrm{1}} {x}^{\mathrm{2}} +{A}_{\mathrm{1}} {x}+{A}_{\mathrm{2}} {x}+{A}_{\mathrm{2}} +{Bx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$$\left({A}_{\mathrm{1}} +{B}\right){x}^{\mathrm{2}} +\left({A}_{\mathrm{1}} +{A}_{\mathrm{2}} \right){x}+{A}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$${A}_{\mathrm{1}} +{B}=\mathrm{1}\:,\:{A}_{\mathrm{1}} +{A}_{\mathrm{2}} =\mathrm{2}\:\:,\:{A}_{\mathrm{2}} =\mathrm{5} \\ $$$${A}_{\mathrm{1}} +{B}=\mathrm{1}\Rightarrow{A}_{\mathrm{1}} +\mathrm{4}=\mathrm{1}\Rightarrow{A}_{\mathrm{1}} =−\mathrm{3} \\ $$$${A}_{\mathrm{1}} +{A}_{\mathrm{2}} =\mathrm{2}\Rightarrow−\mathrm{3}+\mathrm{5}=\mathrm{2}\:\checkmark \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}=\left({x}−\mathrm{1}\right)+\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)} \\ $$$$\:\:\:\:={x}−\frac{\mathrm{3}}{{x}}+\frac{\mathrm{5}}{{x}^{\mathrm{2}} }+\frac{\mathrm{4}}{{x}+\mathrm{1}}−\mathrm{1} \\ $$$$\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\sum}\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}=\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:{x}−\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\frac{\mathrm{3}}{{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\:\:\frac{\mathrm{5}}{{x}^{\mathrm{2}} }+\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\:+\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\:\:\frac{\mathrm{4}}{{x}+\mathrm{1}} \\ $$$$\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\sum}\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}+\mathrm{5}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}=−\mathrm{1}+\left(\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:{x}\right)−\:\mathrm{3}\left(\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\frac{\mathrm{1}}{{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\mathrm{5}\left(\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:+\mathrm{4}\underset{{x}\in\left\{{a},{b},{c},{d}\right\}} {\Sigma}\:\:\:\:\:\:\:\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$=−\mathrm{1}+\left({a}+{b}+{c}+{d}\right) \\ $$$$\:\:\:\:\:−\mathrm{3}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{\mathrm{1}}{{d}}\right) \\ $$$$\:\:\:\:+\mathrm{5}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }+\frac{\mathrm{1}}{{d}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:+\mathrm{4}\left(\frac{\mathrm{1}}{{a}+\mathrm{1}}+\frac{\mathrm{1}}{{b}+\mathrm{1}}+\frac{\mathrm{1}}{{c}+\mathrm{1}}+\frac{\mathrm{1}}{{d}+\mathrm{1}}\right) \\ $$$$ \\ $$$$…. \\ $$$$… \\ $$
Commented by Rasheed.Sindhi last updated on 03/Jan/22
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{miss}}\:\boldsymbol{\mathrm{tawa}}, \\ $$$${your}\:{compliments}\:{matters}\:{for}\:{me}! \\ $$
Commented by Tawa11 last updated on 03/Jan/22
$$\mathrm{Weldone}\:\mathrm{sir} \\ $$
Commented by Tawa11 last updated on 04/Jan/22
$$\mathrm{I}\:\mathrm{usually}\:\mathrm{learn}\:\mathrm{from}\:\mathrm{your}\:\mathrm{solutions}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}. \\ $$
Commented by Rasheed.Sindhi last updated on 04/Jan/22
$$\mathbb{T}\boldsymbol{\mathrm{hanks}}\:\boldsymbol{\mathrm{Miss}}!\:\mathrm{Iappreciate}\:\mathrm{your}\:\mathrm{contribution}\:\mathrm{to}\: \\ $$$$\mathrm{to}\:\mathrm{forum}\:\&\:\mathrm{your}\:\mathrm{encouraging}\:\mathrm{others}. \\ $$$$\boldsymbol{\mathrm{GOD}}\:\boldsymbol{\mathrm{BLESS}}\:\boldsymbol{\mathrm{YOU}}\:\boldsymbol{\mathrm{ALSO}}! \\ $$