Menu Close

Question-162825




Question Number 162825 by KONE last updated on 01/Jan/22
Answered by mr W last updated on 01/Jan/22
2.  P_(n+2) −2XP_(n+1) +P_n =0  t^2 −2Xt+1=0 (char. eqn.)  t=X±(√(X^2 −1))  P_n =A(X+(√(X^2 −1)))^n +B(X−(√(X^2 −1)))^n   P_0 =A+B=1  P_1 =A(X+(√(X^2 −1)))+B(X−(√(X^2 −1)))=X  ⇒A=B=(1/2)  P_n =(((X+(√(X^2 −1)))^n +(X−(√(X^2 −1)))^n )/2)  P_n =(((X+(√(X^2 −1)))^n +(X+(√(X^2 −1)))^(−n) )/2)  P_n =((e^(nln (X+(√(X^2 −1)))) +e^(−nln (X+(√(X^2 −1)))) )/2)  P_n =cosh [n ln (X+(√(X^2 −1)))]  P_n =cosh (n cosh^(−1) X)
2.Pn+22XPn+1+Pn=0t22Xt+1=0(char.eqn.)t=X±X21Pn=A(X+X21)n+B(XX21)nP0=A+B=1P1=A(X+X21)+B(XX21)=XA=B=12Pn=(X+X21)n+(XX21)n2Pn=(X+X21)n+(X+X21)n2Pn=enln(X+X21)+enln(X+X21)2Pn=cosh[nln(X+X21)]Pn=cosh(ncosh1X)
Commented by KONE last updated on 02/Jan/22
merci a vous
merciavous
Commented by Tawa11 last updated on 02/Jan/22
Great sir
Greatsir
Answered by KONE last updated on 01/Jan/22
besoin d′aide
besoindaide

Leave a Reply

Your email address will not be published. Required fields are marked *