Question Number 162825 by KONE last updated on 01/Jan/22
Answered by mr W last updated on 01/Jan/22
$$\mathrm{2}. \\ $$$${P}_{{n}+\mathrm{2}} −\mathrm{2}{XP}_{{n}+\mathrm{1}} +{P}_{{n}} =\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{Xt}+\mathrm{1}=\mathrm{0}\:\left({char}.\:{eqn}.\right) \\ $$$${t}={X}\pm\sqrt{{X}^{\mathrm{2}} −\mathrm{1}} \\ $$$${P}_{{n}} ={A}\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{{n}} +{B}\left({X}−\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{{n}} \\ $$$${P}_{\mathrm{0}} ={A}+{B}=\mathrm{1} \\ $$$${P}_{\mathrm{1}} ={A}\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)+{B}\left({X}−\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)={X} \\ $$$$\Rightarrow{A}={B}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${P}_{{n}} =\frac{\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{{n}} +\left({X}−\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{{n}} }{\mathrm{2}} \\ $$$${P}_{{n}} =\frac{\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{{n}} +\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)^{−{n}} }{\mathrm{2}} \\ $$$${P}_{{n}} =\frac{{e}^{{n}\mathrm{ln}\:\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)} +{e}^{−{n}\mathrm{ln}\:\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)} }{\mathrm{2}} \\ $$$${P}_{{n}} =\mathrm{cosh}\:\left[{n}\:\mathrm{ln}\:\left({X}+\sqrt{{X}^{\mathrm{2}} −\mathrm{1}}\right)\right] \\ $$$${P}_{{n}} =\mathrm{cosh}\:\left({n}\:\mathrm{cosh}^{−\mathrm{1}} {X}\right) \\ $$
Commented by KONE last updated on 02/Jan/22
$${merci}\:{a}\:{vous} \\ $$
Commented by Tawa11 last updated on 02/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by KONE last updated on 01/Jan/22
$${besoin}\:{d}'{aide} \\ $$