Menu Close

Question-162827




Question Number 162827 by saboorhalimi last updated on 01/Jan/22
Answered by Ar Brandon last updated on 01/Jan/22
g(x)=lim_(r→0) ((x+1)^(r+1) −x^(r+1) )^(1/r)   lim_(x→∞) ((g(x))/x)=lim_(r→0, x→∞) x^(1+(1/r)−1) ((1+(1/x))^(r+1) −1)^(1/r)   =lim_(r→0, x→∞) x^(1/r) (1+((r+1)/x)−1)^(1/r) =lim_(r→0) (r+1)^(1/r)   =lim_(r→0)  e^((1/r)ln(r+1)) =lim_(r→0)  e^((1/r)(r)) =e
g(x)=limr0((x+1)r+1xr+1)1rlimxg(x)x=limr0,xx1+1r1((1+1x)r+11)1r=limr0,xx1r(1+r+1x1)1r=limr0(r+1)1r=limr0e1rln(r+1)=limr0e1r(r)=e

Leave a Reply

Your email address will not be published. Required fields are marked *