Menu Close

Question-162834




Question Number 162834 by mkam last updated on 01/Jan/22
Answered by abdullahhhhh last updated on 01/Jan/22
lim_(x→0)  ((x+tan2x)/(x−tan2x)) /x  lim_(x→0) ((1+2)/(1−2))=−3
limx0x+tan2xxtan2x/xlimx01+212=3
Answered by abdullahhhhh last updated on 01/Jan/22
lim_(x→e)  ((sinx−x)/x^3 )=((sin(e)−e)/e^3 )
limxesinxxx3=sin(e)ee3
Answered by abdullahhhhh last updated on 01/Jan/22
lim_(x→0)  ((e^x +e^(−x) −x^2 −2)/(sin^2 x−x^2 ))=((0/0)) use lobital  lim_(x→0)  ((e^x −e^(−x) −2x)/(2sinx cosx(sin2x)−2x))=(0/0)   lim_(x→0)  ((e^x +e^(−x) −2)/(2cos2x−2))=((2−2)/(2−2))=(0/0)  lim_(x→0)  ((e^x −e^(−x) )/(−4sin2x))=((1−1)/0)=(0/0)  lim_(x→0)  ((e^x +e^(−x) )/(−8cos2x))=(2/(−8))=((−1)/4)
limx0ex+exx22sin2xx2=(00)uselobitallimx0exex2x2sinxcosx(sin2x)2x=00limx0ex+ex22cos2x2=2222=00limx0exex4sin2x=110=00limx0ex+ex8cos2x=28=14
Answered by abdullahhhhh last updated on 01/Jan/22
lim_(x→0)  ((xe^x −ln(1+x))/x^2 )=(0/0) lobital  lim_(x→0)  ((xe^x +e^x −(1/((x+1) )))/(2x))=(0/0)  lim_(x→0) ((xe^x +e^x +e^x +(1/((x+1)^2 )))/2)=(3/2)
limx0xexln(1+x)x2=00lobitallimx0xex+ex1(x+1)2x=00limx0xex+ex+ex+1(x+1)22=32
Answered by abdullahhhhh last updated on 01/Jan/22
lim_(x→∞) (((lnx)/x))=(∞/∞) use lobital  lim_(x→∞) (1/x)=(1/∞)=0
limx(lnxx)=uselobitallimx1x=1=0

Leave a Reply

Your email address will not be published. Required fields are marked *