Menu Close

Question-162864




Question Number 162864 by mathacek last updated on 01/Jan/22
Answered by Ar Brandon last updated on 01/Jan/22
I=∫_0 ^π xln(sinx)dx=∫_0 ^π (π−x)ln(sinx)dx     =π∫_0 ^π ln(sinx)dx−∫_0 ^π xln(sinx)dx  I=(π/2)∫_0 ^π ln(sinx)dx , x=2u ⇒dx=2du     =π∫_0 ^(π/2) ln(sin(2u))dx=π∫_0 ^(π/2) ln(2sinucosu)du     =π∫_0 ^(π/2) ln(2)du+π∫_0 ^(π/2) ln(sinu)du+π∫_0 ^(π/2) ln(cosu)du     =((π^2 ln2)/2)+2π∫_0 ^(π/2) ln(sinu)du, {∫_0 ^(π/2) ln(sinu)du=∫_0 ^(π/2) ln(cosu)du}     =((π^2 ln2)/2)−π^2 ln2=−(1/2)π^2 ln2
I=0πxln(sinx)dx=0π(πx)ln(sinx)dx=π0πln(sinx)dx0πxln(sinx)dxI=π20πln(sinx)dx,x=2udx=2du=π0π2ln(sin(2u))dx=π0π2ln(2sinucosu)du=π0π2ln(2)du+π0π2ln(sinu)du+π0π2ln(cosu)du=π2ln22+2π0π2ln(sinu)du,{0π2ln(sinu)du=0π2ln(cosu)du}=π2ln22π2ln2=12π2ln2
Commented by Ar Brandon last updated on 01/Jan/22
I=∫_0 ^(π/2) ln(sinx)dx=∫_0 ^(π/2) ln(cosx)dx  2I=∫_0 ^(π/2) ln(sinxcosx)dx=∫_0 ^(π/2) ln((1/2)sin(2x))dx        =∫_0 ^(π/2) ln((1/2))dx+∫_0 ^(π/2) ln(sin2x)dx        =−((πln2)/2)+(1/2)∫_0 ^π ln(sinu)du
I=0π2ln(sinx)dx=0π2ln(cosx)dx2I=0π2ln(sinxcosx)dx=0π2ln(12sin(2x))dx=0π2ln(12)dx+0π2ln(sin2x)dx=πln22+120πln(sinu)du
Answered by Lordose last updated on 01/Jan/22
I = ∫_0 ^( 𝛑) xln(sin(x))dx =^(King′s Rule) ∫_0 ^( 𝛑) (𝛑−x)ln(sin(x))dx  2I = 𝛑∫_0 ^( 𝛑) ln(sin(x))dx =^(u=2x) (𝛑/2)∫_0 ^( 2𝛑) ln(sin((u/2)))dx  I = (𝛑/4)(−Cl_2 (2𝛑) − 2𝛑ln(2))  I = −((𝛑^2 ln(2))/2)
I=0πxln(sin(x))dx=KingsRule0π(πx)ln(sin(x))dx2I=π0πln(sin(x))dx=u=2xπ202πln(sin(u2))dxI=π4(Cl2(2π)2πln(2))I=π2ln(2)2
Commented by mathacek last updated on 02/Jan/22
What′s for Cl_2 ?
WhatsforCl2?
Commented by Ar Brandon last updated on 02/Jan/22
Clausen function  Cl_2 (z)=Σ_(n≥1) ((sin(nz))/n^2 )
ClausenfunctionCl2(z)=n1sin(nz)n2

Leave a Reply

Your email address will not be published. Required fields are marked *