Question Number 162949 by ajfour last updated on 02/Jan/22
Commented by ajfour last updated on 02/Jan/22
$${If}\:{the}\:{semi}\:{ring}\:{plus}\:{rod}\:{combina}^{{n}} , \\ $$$${having}\:{the}\:{same}\:{linear}\:{mass}\:{dens}- \\ $$$${ity}\:{is}\:{released}\:{as}\:{shown},\:{how}\:{long}\: \\ $$$${does}\:{it}\:{take}\:{to}\:{turn}\:{around}\:{the}\:{pivot} \\ $$$${and}\:{hit}\:{the}\:{ground}? \\ $$
Answered by mr W last updated on 02/Jan/22
Commented by mr W last updated on 02/Jan/22
$$\rho={mass}\:{of}\:{unit}\:{length} \\ $$$${m}={total}\:{mass} \\ $$$${m}=\left(\pi{R}+\mathrm{3}{R}\right)\rho=\left(\pi+\mathrm{3}\right){R}\rho \\ $$$${x}={R}\:\mathrm{cos}\:\phi \\ $$$${y}=\frac{\mathrm{3}{R}}{\mathrm{2}}+{R}\:\mathrm{sin}\:\phi \\ $$$${dm}=\rho{Rd}\phi \\ $$$${me}=\int{xdm}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {R}\:\mathrm{cos}\:\phi\:\rho{Rd}\phi \\ $$$${me}=\rho{R}^{\mathrm{2}} \left[\mathrm{sin}\:\phi\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{2}\rho{R}^{\mathrm{2}} \\ $$$$\left(\pi+\mathrm{3}\right){R}\rho{e}=\mathrm{2}\rho{R}^{\mathrm{2}} \\ $$$$\Rightarrow{e}=\frac{\mathrm{2}{R}}{\pi+\mathrm{3}} \\ $$$${I}_{{x}} =\frac{\left(\mathrm{3}{R}\rho\right)\left(\mathrm{3}{R}\right)^{\mathrm{2}} }{\mathrm{3}}+\int{y}^{\mathrm{2}} {dm} \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{3}{R}}{\mathrm{2}}+{R}\:\mathrm{sin}\:\phi\right)^{\mathrm{2}} \rho{Rd}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{sin}\:\phi\right)^{\mathrm{2}} {d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{9}}{\mathrm{4}}+\mathrm{3}\:\mathrm{sin}\:\phi+\mathrm{sin}^{\mathrm{2}} \:\phi\right){d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{11}}{\mathrm{4}}+\mathrm{3}\:\mathrm{sin}\:\phi−\frac{\mathrm{cos}\:\mathrm{2}\phi}{\mathrm{2}}\right){d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \left[\frac{\mathrm{11}\phi}{\mathrm{4}}−\mathrm{3}\:\mathrm{cos}\:\phi−\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{4}}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\frac{\mathrm{11}\pi\rho{R}^{\mathrm{3}} }{\mathrm{4}}=\left(\mathrm{9}+\frac{\mathrm{11}\pi}{\mathrm{4}}\right)\rho{R}^{\mathrm{3}} \\ $$$$\Rightarrow{I}_{{x}} =\frac{\left(\mathrm{36}+\mathrm{11}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$$${I}_{{y}} =\int{x}^{\mathrm{2}} {dm} \\ $$$${I}_{{y}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {R}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi\rho{Rd}\phi \\ $$$${I}_{{y}} =\frac{\rho{R}^{\mathrm{3}} }{\mathrm{2}}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{cos}\:\mathrm{2}\phi+\mathrm{1}\right){d}\phi \\ $$$${I}_{{y}} =\frac{\rho{R}^{\mathrm{3}} }{\mathrm{2}}\left[\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}+\phi\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}_{{y}} =\frac{\pi\rho{R}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\Rightarrow{I}_{{y}} =\frac{\pi{mR}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$${I}_{\mathrm{0}} ={I}_{{x}} +{I}_{{y}} =\frac{\left(\mathrm{36}+\mathrm{11}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}+\frac{\pi{mR}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$$\Rightarrow{I}_{\mathrm{0}} =\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$
Commented by mr W last updated on 02/Jan/22
Commented by mr W last updated on 02/Jan/22
$$\mathrm{cos}\:\varphi=\frac{{R}}{\mathrm{1}.\mathrm{5}{R}}=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\varphi=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$${I}_{\mathrm{0}} \alpha={mg}\left(\mathrm{1}.\mathrm{5}{R}\:\mathrm{sin}\:\theta+{e}\:\mathrm{cos}\:\theta\right) \\ $$$$\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}\omega\frac{{d}\omega}{{d}\theta}={mg}\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\:\mathrm{sin}\:\theta+\frac{\mathrm{2}{R}}{\mathrm{3}+\pi}\:\mathrm{cos}\:\theta\right) \\ $$$$\omega\frac{{d}\omega}{{d}\theta}=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\left[\mathrm{3}\left(\mathrm{3}+\pi\right)\:\mathrm{sin}\:\theta+\mathrm{4}\:\mathrm{cos}\:\theta\right] \\ $$$$\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\int_{\mathrm{0}} ^{\theta} \left[\mathrm{3}\left(\mathrm{3}+\pi\right)\:\mathrm{sin}\:\theta+\mathrm{4}\:\mathrm{cos}\:\theta\right]{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\left[\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta\right] \\ $$$$\omega=\sqrt{\frac{\mathrm{4}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}}×\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta} \\ $$$$\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}}={dt} \\ $$$$\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\int_{\mathrm{0}} ^{\varphi} \frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}}=\int_{\mathrm{0}} ^{{T}} {dt} \\ $$$${T}=\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\int_{\mathrm{0}} ^{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}} \frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}} \\ $$$${T}\approx\mathrm{0}.\mathrm{751917}\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\approx\mathrm{3}.\mathrm{2956}\sqrt{\frac{{R}}{{g}}} \\ $$
Commented by ajfour last updated on 02/Jan/22
$${OmG}\:!\:{gimme}\:{time},\:{sir}.. \\ $$
Commented by mr W last updated on 02/Jan/22
$${do}\:{you}\:{have}\:{the}\:{answer}\:{sir}? \\ $$
Commented by ajfour last updated on 02/Jan/22
$${no},\:{my}\:{creation}..,\:{sir}! \\ $$
Commented by mr W last updated on 02/Jan/22
Commented by Ar Brandon last updated on 02/Jan/22
Is this Lekh diagram, Sir?
Commented by mr W last updated on 02/Jan/22
$${for}\:{this}\:{one}\:{i}\:{didn}'{t}\:{use}\:{LEKH},\:{but} \\ $$$${an}\:{any}\:{image}\:{app}\:{in}\:{my}\:{smart}\:{phone}. \\ $$$${certainly}\:{you}\:{can}\:{use}\:{LEKH}. \\ $$
Commented by Tawa11 last updated on 03/Jan/22
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by Ar Brandon last updated on 03/Jan/22
OK
Answered by ajfour last updated on 02/Jan/22
Commented by ajfour last updated on 03/Jan/22
$${Mgr}\mathrm{cos}\:\left(\theta+\beta\right)+{mgL}\mathrm{cos}\:\theta={I}\left(\frac{\omega{d}\omega}{{d}\theta}\right) \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}{g}}=\frac{{Mr}\mathrm{sin}\:\left(\theta+\beta\right)+{mL}\mathrm{sin}\:\theta}{{I}} \\ $$$$\int_{\mathrm{0}} ^{\:{T}} {dt}=\sqrt{\frac{{I}}{\mathrm{2}{g}}}\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{{Mr}\mathrm{sin}\:\left(\theta+\beta\right)+{mL}\mathrm{sin}\:\theta}} \\ $$$$…. \\ $$$${T}\sqrt{\frac{\mathrm{2}{g}}{{I}}}=\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{{M}\left({e}\mathrm{sin}\:\theta+\frac{\mathrm{3}{R}}{\mathrm{2}}\mathrm{cos}\:\theta\right)+{m}\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\mathrm{sin}\:\theta\right)}} \\ $$$${cos}\:\phi=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{{M}}{{m}}=\frac{\pi{R}}{\mathrm{3}{R}}=\frac{\pi}{\mathrm{3}} \\ $$$${M}\left(\frac{{R}}{\mathrm{2}}\right)+{m}\left(\mathrm{0}\right)=\left({M}+{m}\right){e} \\ $$$${e}=\frac{{R}/\mathrm{2}}{\mathrm{1}+\frac{\mathrm{3}}{\pi}}=\frac{\pi{R}}{\mathrm{2}\left(\pi+\mathrm{3}\right)} \\ $$$${I}=?\:\left({i}\:{doubt},\:{if}\:{we}\:{can}\:{easily}\:{find}..\right) \\ $$$${T}\sqrt{\frac{\mathrm{2}{mgR}}{{I}}}={J} \\ $$$${J}=\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{\left[\left(\frac{\pi}{\mathrm{6}}\right)\left(\frac{\pi}{\pi+\mathrm{3}}\right)+\frac{\mathrm{3}}{\mathrm{2}}\right]\mathrm{sin}\:\theta+\left(\frac{\pi}{\mathrm{2}}\right)\mathrm{cos}\:\theta}} \\ $$$${i}\:{can}\:{go}\:{this}\:{far},\:{Sir}! \\ $$
Commented by mr W last updated on 03/Jan/22
$${the}\:{COM}\:{of}\:{a}\:{semi}\:{ring}\:{is}\:{not}\:\frac{{R}}{\mathrm{2}} \\ $$$${apart}\:{from}\:{the}\:{center}\:{of}\:{the}\:{circle},\: \\ $$$${but}\:\frac{\mathrm{2}{R}}{\pi}. \\ $$$${therefore}\:{it}\:{should}\:{be}: \\ $$$${M}\left(\frac{\mathrm{2}{R}}{\pi}\right)+{m}\left(\mathrm{0}\right)=\left({M}+{m}\right){e} \\ $$$${e}=\frac{\mathrm{2}{R}/\pi}{\mathrm{1}+\frac{\mathrm{3}}{\pi}}=\frac{\mathrm{2}{R}}{\pi+\mathrm{3}} \\ $$$${i}\:{got}\:{this}\:{too}. \\ $$
Commented by mr W last updated on 03/Jan/22
Commented by mr W last updated on 03/Jan/22
$${I}_{\mathrm{0}} \:{can}\:{also}\:{be}\:“{easily}''\:{obtained}\:{in}\: \\ $$$${following}\:{way}: \\ $$$${the}\:{MoI}\:{of}\:{a}\:{complete}\:{ring}\:{about} \\ $$$${its}\:{axis}\:{is}\:{obviously}\:{I}_{{p}} ={MR}^{\mathrm{2}} ,\:{so}\:{the}\: \\ $$$${MoI}\:{about}\:{its}\:{diameter}\:{is}\:{obviously} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}},\:{since}\:{I}_{{P}} ={I}_{{x}} +{I}_{{y}} \:{and}\:{I}_{{x}} ={I}_{{y}} . \\ $$$${on}\:{the}\:{other}\:{side}\:{a}\:{complete}\:{ring} \\ $$$${consists}\:{of}\:{two}\:{semi}\:{rings}. \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}\left({I}_{{semi},{y},\mathrm{0}} +{m}_{{semi}} {e}^{\mathrm{2}} \right) \\ $$$${I}_{{semi},{y}} ={I}_{{semi},{y},\mathrm{0}} +{m}_{{semi}} {e}^{\mathrm{2}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{4}}=\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{I}_{{semi},{x},\mathrm{0}} \\ $$$${I}_{{semi},{x},\mathrm{0}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{4}}=\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{semi},{x}} ={I}_{{semi},{x},\mathrm{0}} +{m}_{{semi}} \left(\frac{\mathrm{3}{R}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${I}_{{semi},{x}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{9}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{11}{m}_{{semu}} {R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${I}_{{rod},{y}} =\mathrm{0} \\ $$$${I}_{{rod},{x}} =\frac{{m}_{{rod}} \left(\mathrm{3}{R}\right)^{\mathrm{2}} }{\mathrm{3}}=\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},{y}} ={I}_{{semi},{y}} +{I}_{{rod},{y}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{total},{x}} ={I}_{{semi},{x}} +{I}_{{rod},{x}} =\frac{\mathrm{11}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},\mathrm{0}} ={I}_{{total},{y}} +{I}_{{total},{x}} \\ $$$${I}_{{total},\mathrm{0}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{11}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},\mathrm{0}} =\frac{\mathrm{13}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${m}_{{semi}} =\frac{\pi}{\mathrm{3}+\pi}{m}_{{total}} \\ $$$${m}_{{rod}} =\frac{\mathrm{3}}{\mathrm{3}+\pi}{m}_{{total}} \\ $$$${I}_{{total},\mathrm{0}} =\left(\frac{\mathrm{13}\pi}{\mathrm{4}}+\mathrm{9}\right)\frac{{m}_{{total}} {R}^{\mathrm{2}} }{\mathrm{3}+\pi}=\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){m}_{{total}} {R}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$
Commented by ajfour last updated on 03/Jan/22
$${I}\:{thought}\:\:{first}\:\://\:\:{axis}\:{theorem} \\ $$$${for}\:{moment}\:{of}\:{inertia}\:{wd}\:{apply} \\ $$$${for}\:{symmetrical}\:{bodies}\:{only}, \\ $$$${but}\:{really}\:{thats}\:{the}\:{restriction} \\ $$$${in}\:\:\bot\:{axis}\:{theorem},\:{so}\:{i}\:{had} \\ $$$${commented}\:{such},\:{n}\:{yes}\:{sir},\:{sorry} \\ $$$${for}\:{the}\:{mistake}\:{for}\:{c}.{m}.\:{of}\:{ring}.. \\ $$
Answered by mr W last updated on 03/Jan/22
Commented by ajfour last updated on 03/Jan/22
$${Awezome}\:..\rightarrow\infty \\ $$
Commented by mr W last updated on 03/Jan/22
$$\mathrm{cos}\:\varphi=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${e}=\frac{\mathrm{2}{R}}{\mathrm{3}+\pi} \\ $$$${I}_{\mathrm{0}} =\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$$${r}=\sqrt{{e}^{\mathrm{2}} +\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} \:}{R}}{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$$\mathrm{cos}\:\phi=\frac{\mathrm{3}{R}}{\mathrm{2}{r}}=\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }} \\ $$$${mgr}\:\mathrm{sin}\:\theta={I}_{\mathrm{0}} \left(\omega\frac{{d}\omega}{{d}\theta}\right) \\ $$$${mgr}\:\mathrm{sin}\:\theta=\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}\left(\omega\frac{{d}\omega}{{d}\theta}\right) \\ $$$$\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\mathrm{sin}\:\theta=\omega\frac{{d}\omega}{{d}\theta} \\ $$$$\omega{d}\omega=\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\left[\mathrm{cos}\:\left(\phi\right)−\mathrm{cos}\:\theta\right] \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{4}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\left[\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}−\mathrm{cos}\:\theta\right] \\ $$$$\omega^{\mathrm{2}} =\frac{{g}}{{a}^{\mathrm{2}} {R}}\:\left({b}−\mathrm{cos}\:\theta\right) \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{36}+\mathrm{13}\pi}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}}\approx\mathrm{1}.\mathrm{009402} \\ $$$${b}=\mathrm{cos}\:\phi=\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}\approx\mathrm{0}.\mathrm{977236} \\ $$$$\omega=\frac{{d}\theta}{{dt}}=\frac{\sqrt{{b}−\mathrm{cos}\:\theta}}{{a}}\sqrt{\frac{{g}}{{R}}} \\ $$$$\sqrt{\frac{{R}}{{g}}}×\frac{{ad}\theta}{\:\sqrt{{b}−\mathrm{cos}\:\theta}}={dt} \\ $$$${T}=\sqrt{\frac{{R}}{{g}}}\:\int_{\phi} ^{\varphi+\phi} \frac{{ad}\theta}{\:\sqrt{{b}−\mathrm{cos}\:\theta}}\approx\mathrm{3}.\mathrm{2956}\sqrt{\frac{{R}}{{g}}} \\ $$
Commented by mr W last updated on 03/Jan/22
$${not}\:{really}\:{better}\:… \\ $$