Menu Close

Question-163048




Question Number 163048 by mnjuly1970 last updated on 03/Jan/22
Answered by mahdipoor last updated on 03/Jan/22
sin^2 x=m   cos^2 x=n  ⇒m^′ =−n^′ =2cosx.sinx   f ′=(nm^3 +mn^3 ) ′=m′(3nm^2 +n^3 )+n′(3mn^2 +m^3 )=  2cosx.sinx(n^3 −3mn^2 +3m^2 n−m^3 )=  sin2x(n−m)^3 =  sin2x(cos^2 x−sin^2 x)^3 =  sin2x.cos^3 2x=0  ⇒x=((kπ)/4)+(π/2)   { ((sin(((kπ)/4)+(π/2))=cos(((kπ)/4)))),((cos(((kπ)/4)+(π/2))=−sin(((kπ)/2)))) :}   f(((kπ)/4)+(π/2))=(1/4)sin^2 (((kπ)/2))(sin^4 (((kπ)/4))+cos^4 (((kπ)/4)))  = { ((2∣k  f=0)),((2∤k  f=+(1/8))) :}  R_f =[0,0.125]
sin2x=mcos2x=nm=n=2cosx.sinxf=(nm3+mn3)=m(3nm2+n3)+n(3mn2+m3)=2cosx.sinx(n33mn2+3m2nm3)=sin2x(nm)3=sin2x(cos2xsin2x)3=sin2x.cos32x=0x=kπ4+π2{sin(kπ4+π2)=cos(kπ4)cos(kπ4+π2)=sin(kπ2)f(kπ4+π2)=14sin2(kπ2)(sin4(kπ4)+cos4(kπ4))={2kf=02kf=+18Rf=[0,0.125]
Commented by mnjuly1970 last updated on 03/Jan/22
mercey sir mahdipoor
merceysirmahdipoor
Answered by tounghoungko last updated on 03/Jan/22
 f(x)= sin^2 x cos^2 x (sin^4 x+cos^4 x)   f(x)=(1/4)sin^2 2x(1−2sin^2 x cos^2 x)   f(x)=(1/4)sin^2 2x (1−(1/2)sin^2 2x)   f(x)= (1/4)sin^2 2x−(1/8)sin^4 2x    f(x)=−(1/8)(sin^4 2x−2sin^2 2x+1)+(1/8)   f(x)=−(1/8)(sin^2 2x−1)^2 +(1/8)   where 0≤sin^2 2x ≤1   when  { ((sin^2 2x =0 ⇒f = 0)),((sin^2 2x=1⇒f= (1/8))) :}   Range f ⇒ 0 ≤f ≤ (1/8)
f(x)=sin2xcos2x(sin4x+cos4x)f(x)=14sin22x(12sin2xcos2x)f(x)=14sin22x(112sin22x)f(x)=14sin22x18sin42xf(x)=18(sin42x2sin22x+1)+18f(x)=18(sin22x1)2+18where0sin22x1when{sin22x=0f=0sin22x=1f=18Rangef0f18
Commented by mnjuly1970 last updated on 03/Jan/22
  very nice solution sir
verynicesolutionsir
Answered by abdullahhhhh last updated on 03/Jan/22
Commented by mnjuly1970 last updated on 03/Jan/22
thanks alot master
thanksalotmaster

Leave a Reply

Your email address will not be published. Required fields are marked *