Menu Close

Question-163226




Question Number 163226 by nurtani last updated on 05/Jan/22
Commented by Rasheed.Sindhi last updated on 06/Jan/22
Sir mr W,why have you deleted your  answer?
$$\boldsymbol{\mathrm{Sir}}\:\boldsymbol{\mathrm{mr}}\:\boldsymbol{\mathrm{W}},{why}\:{have}\:{you}\:{deleted}\:{your} \\ $$$${answer}? \\ $$
Commented by mr W last updated on 06/Jan/22
sometimes i delete my answer when  i see that there exists already the   same or similar answer from other  people.
$${sometimes}\:{i}\:{delete}\:{my}\:{answer}\:{when} \\ $$$${i}\:{see}\:{that}\:{there}\:{exists}\:{already}\:{the}\: \\ $$$${same}\:{or}\:{similar}\:{answer}\:{from}\:{other} \\ $$$${people}. \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jan/22
Understood sir!
$${Understood}\:\boldsymbol{{sir}}! \\ $$
Answered by cortano1 last updated on 05/Jan/22
  2^(5x−1)  . 3^(4x+1)  .7^(3x+3)  = 2^(3x−6)  .3^(2x−4)  .7^(x−2)    ⇒x=−(5/2)
$$\:\:\mathrm{2}^{\mathrm{5}{x}−\mathrm{1}} \:.\:\mathrm{3}^{\mathrm{4}{x}+\mathrm{1}} \:.\mathrm{7}^{\mathrm{3}{x}+\mathrm{3}} \:=\:\mathrm{2}^{\mathrm{3}{x}−\mathrm{6}} \:.\mathrm{3}^{\mathrm{2}{x}−\mathrm{4}} \:.\mathrm{7}^{{x}−\mathrm{2}} \\ $$$$\:\Rightarrow{x}=−\frac{\mathrm{5}}{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 05/Jan/22
2^(5x−1) .3^(4x+1) .7^(3x+3) =(2^3 .3^2 .7)^(x−2)          =2^(3x−6) .3^(2x−4) .7^(x−2))   2^(5x−1−3x+6) .3^(4x+1−2x+4) .7^(3x+3−x+2) =1  2^(2x+5) .3^(2x+5) .7^(2x+5) =1  (2.3.7)^(2x+5) =(2.3.7)^0   2x+5=0  x=−(5/2)
$$\mathrm{2}^{\mathrm{5}{x}−\mathrm{1}} .\mathrm{3}^{\mathrm{4}{x}+\mathrm{1}} .\mathrm{7}^{\mathrm{3}{x}+\mathrm{3}} =\left(\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{2}} .\mathrm{7}\right)^{{x}−\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{2}^{\mathrm{3}{x}−\mathrm{6}} .\mathrm{3}^{\mathrm{2}{x}−\mathrm{4}} .\mathrm{7}^{\left.{x}−\mathrm{2}\right)} \\ $$$$\mathrm{2}^{\mathrm{5}{x}−\mathrm{1}−\mathrm{3}{x}+\mathrm{6}} .\mathrm{3}^{\mathrm{4}{x}+\mathrm{1}−\mathrm{2}{x}+\mathrm{4}} .\mathrm{7}^{\mathrm{3}{x}+\mathrm{3}−{x}+\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{2}^{\mathrm{2}{x}+\mathrm{5}} .\mathrm{3}^{\mathrm{2}{x}+\mathrm{5}} .\mathrm{7}^{\mathrm{2}{x}+\mathrm{5}} =\mathrm{1} \\ $$$$\left(\mathrm{2}.\mathrm{3}.\mathrm{7}\right)^{\mathrm{2}{x}+\mathrm{5}} =\left(\mathrm{2}.\mathrm{3}.\mathrm{7}\right)^{\mathrm{0}} \\ $$$$\mathrm{2}{x}+\mathrm{5}=\mathrm{0} \\ $$$${x}=−\frac{\mathrm{5}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *