Menu Close

Question-163280




Question Number 163280 by mr W last updated on 05/Jan/22
Commented by mr W last updated on 05/Jan/22
maybe impossible to solve:  find the radius of the n^(th)  circle.
maybeimpossibletosolve:findtheradiusofthenthcircle.
Commented by aleks041103 last updated on 05/Jan/22
I′ll try...
Illtry
Commented by behi834171 last updated on 07/Jan/22
       r_n =(1/2^((n−1)) )(2−(√2))^n (2−(√(2−(√2))))^((n−1))   .  please see q#10455
rn=12(n1)(22)n(222)(n1).You can't use 'macro parameter character #' in math mode
Commented by mr W last updated on 07/Jan/22
thanks sir!  yes. i remember this question was  once discussed.  but the formula you mentioned is  not correct. only r_1  is correct. upon  n=2, it is not correct, because the  circles don′t tangent with the curve  y=(1/x), see diagram.  i think it′s impossible to find a  formula for the radius of n^(th)  circle  in terms of n.
thankssir!yes.irememberthisquestionwasoncediscussed.buttheformulayoumentionedisnotcorrect.onlyr1iscorrect.uponn=2,itisnotcorrect,becausethecirclesdonttangentwiththecurvey=1x,seediagram.ithinkitsimpossibletofindaformulafortheradiusofnthcircleintermsofn.
Commented by mr W last updated on 08/Jan/22
Answered by ajfour last updated on 06/Jan/22
Commented by ajfour last updated on 08/Jan/22
y^2 =x^2 +2  y=(√(x^2 +2))  (dy/dx)=(x/( (√(x^2 +2))))=  a(√2)+a=(√2)  ⇒  a=2−(√2)  A[0,2(√2)−2]  let   B[(a+b)sin θ, a(√2)+(a+b)cos θ]  b=((a(√2)+(a+b)(cos θ−sin θ))/( (√2)))  let Circle B touches y=(√(x^2 +2))   at  T_2 [p,(√(p^2 +2))]  a(√2)+(a+b)cos θ+bsin φ=(√(p^2 +2))  (a+b)sin θ−bcos φ=p  subtracting  ⇒  a(√2)+(√2)(b−a)+b(sin φ+cos φ)          =(√(p^2 +2))−p     .....(i)  tan φ=((sin φ)/(cos φ))=(p/( (√(p^2 +2))))  ⇒  p^2 =(2/(cot^2 φ−1))   ...(ii)  and   (p+bcos φ)^2 +((√(p^2 +2))−a(√2)−bsin φ)^2         =(a+b)^2     ⇒   p^2 +b^2 +2bpcos φ  +((√(p^2 +2))−a(√2))^2   −2b((√(p^2 +2))−a(√2))sin φ=(a+b)^2         ......(iii)  three eqns.   unknowns:  b,p,tan φ
y2=x2+2y=x2+2dydx=xx2+2=a2+a=2a=22A[0,222]letB[(a+b)sinθ,a2+(a+b)cosθ]b=a2+(a+b)(cosθsinθ)2letCircleBtouchesy=x2+2atT2[p,p2+2]a2+(a+b)cosθ+bsinϕ=p2+2(a+b)sinθbcosϕ=psubtractinga2+2(ba)+b(sinϕ+cosϕ)=p2+2p..(i)tanϕ=sinϕcosϕ=pp2+2p2=2cot2ϕ1(ii)and(p+bcosϕ)2+(p2+2a2bsinϕ)2=(a+b)2p2+b2+2bpcosϕ+(p2+2a2)22b(p2+2a2)sinϕ=(a+b)2(iii)threeeqns.unknowns:b,p,tanϕ

Leave a Reply

Your email address will not be published. Required fields are marked *