Menu Close

Question-163288




Question Number 163288 by HongKing last updated on 05/Jan/22
Answered by Ar Brandon last updated on 05/Jan/22
I=∫_0 ^(π/2) (dx/(1+a^2 tan^2 x))=∫_0 ^(π/2) ((sec^2 x)/(sec^2 x+a^2 tan^2 xsec^2 x))dx     =∫_0 ^∞ (dt/(1+t^2 +a^2 t^2 (1+t^2 )))=∫_0 ^∞ (dt/((t^2 +1)(a^2 t^2 +1)))     =∫_0 ^∞ ((1/(1−a^2 ))∙(1/(t^2 +1))+(a^2 /(a^2 −1))∙(1/(a^2 t^2 +1)))dt     =(1/(1−a^2 ))∙(π/2)+(a^2 /(a^2 −1))∙(1/a)∙(π/2)=((1−a)/(1−a^2 ))∙(π/2)=(π/(2(1+a)))
I=0π2dx1+a2tan2x=0π2sec2xsec2x+a2tan2xsec2xdx=0dt1+t2+a2t2(1+t2)=0dt(t2+1)(a2t2+1)=0(11a21t2+1+a2a211a2t2+1)dt=11a2π2+a2a211aπ2=1a1a2π2=π2(1+a)
Commented by Ar Brandon last updated on 05/Jan/22
(1/((t^2 +1)(a^2 t^2 +1)))=((pt+q)/(t^2 +1))+((rt+s)/(a^2 t^2 +1))  =(((pt+q)(a^2 t^2 +1)+(rt+s)(t^2 +1))/)  lim_(t→i) =(pi+q)(1−a^2 )=1, p=0 , q=(1/(1−a^2 ))  q+s=1⇒s=1−q=(a^2 /(a^2 −1))  p+r=0⇒r=0
1(t2+1)(a2t2+1)=pt+qt2+1+rt+sa2t2+1=(pt+q)(a2t2+1)+(rt+s)(t2+1)limti=(pi+q)(1a2)=1,p=0,q=11a2q+s=1s=1q=a2a21p+r=0r=0
Commented by HongKing last updated on 05/Jan/22
perfect solution my dear Sir thank you
perfectsolutionmydearSirthankyou
Commented by peter frank last updated on 06/Jan/22
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *