Question Number 163318 by KONE last updated on 06/Jan/22
Answered by Mathspace last updated on 06/Jan/22
$$={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} \left[{e}^{\frac{{k}}{{n}}} \right] \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left[{e}^{{x}} \right]\:{dx}\:\:\:{changement} \\ $$$${e}^{{x}} ={t}\:\:{give}\:{x}={lnt} \\ $$$$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \left[{e}^{{x}} \right]{dx}=\int_{\mathrm{1}} ^{{e}} \left[{t}\right]\frac{{dt}}{{t}} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{\left[{t}\right]}{{t}}{dt}\:+\int_{\mathrm{2}} ^{{e}} \:\frac{\left[{t}\right]}{{t}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{dt}}{{t}}\:+\mathrm{2}\int_{\mathrm{2}} ^{{e}} \:\frac{{dt}}{{t}} \\ $$$$={ln}\mathrm{2}+\mathrm{2}\left\{\mathrm{1}−{ln}\mathrm{2}\right\} \\ $$$$=\mathrm{2}−{ln}\mathrm{2} \\ $$