Question Number 163481 by smallEinstein last updated on 07/Jan/22
Answered by Mathspace last updated on 07/Jan/22
$$\Psi_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){logx}\:{dx} \\ $$$${letf}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} {cos}\left({x}^{{n}} \right){dx} \\ $$$${f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} {logx}\:{cos}\left({x}^{{n}} \right){dx} \\ $$$$\Rightarrow{f}^{'} \left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{{n}} \right){logx}\:{dx} \\ $$$${f}\left({a}\right)={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} {e}^{{ix}^{{n}} } {dx}\right)\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} \:{e}^{{ix}^{{n}} } {dx} \\ $$$${let}\:{ix}^{{n}} =−{t}\Rightarrow{x}^{{n}} ={it}\:\Rightarrow \\ $$$${x}=\left({it}\right)^{\frac{\mathrm{1}}{{n}}} ={e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \:{t}^{\frac{\mathrm{1}}{{n}\:}} \Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} \:\:{e}^{{ix}^{{n}} } {dx}={e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \int_{\mathrm{0}} ^{\infty} {e}^{\frac{{i}\pi{a}}{\mathrm{2}{n}}} \:{t}^{\frac{{a}}{{n}}} \:\frac{\mathrm{1}}{{n}}{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=\frac{\mathrm{1}}{{n}}{e}^{\frac{{i}\pi}{\mathrm{2}{n}}\left({a}+\mathrm{1}\right)} \:\int_{\mathrm{0}} ^{\infty} \:{t}^{\frac{{a}+\mathrm{1}}{{n}}−\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{{n}}\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right){e}^{\frac{{i}\pi}{\mathrm{2}{n}}\left({a}+\mathrm{1}\right)} \\ $$$$\Rightarrow{f}\left({a}\right)=\frac{\mathrm{1}}{{n}}\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right) \\ $$$$\Rightarrow{f}^{'} \left({a}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\Gamma^{'} \left(\frac{{a}+\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right) \\ $$$$−\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }{sin}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right) \\ $$$$\Psi_{{n}} ={f}^{'} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\Gamma^{'} \left(\frac{\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi}{\mathrm{2}{n}}\right) \\ $$$$−\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\Gamma\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$\Psi_{\mathrm{4}} \:=\frac{\mathrm{1}}{\mathrm{16}}\Gamma^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right){cos}\left(\frac{\pi}{\mathrm{8}}\right)−\frac{\pi}{\mathrm{32}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right){sin}\left(\frac{\pi}{\mathrm{8}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{4}} \right){logx}\:{dx} \\ $$