Menu Close

Question-163481




Question Number 163481 by smallEinstein last updated on 07/Jan/22
Answered by Mathspace last updated on 07/Jan/22
Ψ_n =∫_0 ^∞  cos(x^n )logx dx  letf(a)=∫_0 ^∞ x^a cos(x^n )dx  f^′ (a)=∫_0 ^∞ x^a logx cos(x^n )dx  ⇒f^′ (0)=∫_0 ^∞ cos(x^n )logx dx  f(a)=Re(∫_0 ^∞  x^a e^(ix^n ) dx)   ∫_0 ^∞  x^a  e^(ix^n ) dx  let ix^n =−t⇒x^n =it ⇒  x=(it)^(1/n) =e^((iπ)/(2n))  t^(1/(n )) ⇒  ∫_0 ^∞  x^a   e^(ix^n ) dx=e^((iπ)/(2n)) ∫_0 ^∞ e^((iπa)/(2n))  t^(a/n)  (1/n)t^((1/n)−1)  e^(−t) dt  =(1/n)e^(((iπ)/(2n))(a+1))  ∫_0 ^∞  t^(((a+1)/n)−1)  e^(−t)  dt  =(1/n)Γ(((a+1)/n))e^(((iπ)/(2n))(a+1))   ⇒f(a)=(1/n)Γ(((a+1)/n))cos(((π(a+1))/(2n)))  ⇒f^′ (a)=(1/n^2 )Γ^′ (((a+1)/n))cos(((π(a+1))/(2n)))  −(π/(2n^2 ))sin(((π(a+1))/(2n)))Γ(((a+1)/n))  Ψ_n =f^′ (0)=(1/n^2 )Γ^′ ((1/n))cos((π/(2n)))  −(π/(2n^2 ))sin((π/(2n)))Γ((1/n))  Ψ_4  =(1/(16))Γ^′ ((1/4))cos((π/8))−(π/(32))Γ((1/4))sin((π/8))  =∫_0 ^∞ cos(x^4 )logx dx
Ψn=0cos(xn)logxdxletf(a)=0xacos(xn)dxf(a)=0xalogxcos(xn)dxf(0)=0cos(xn)logxdxf(a)=Re(0xaeixndx)0xaeixndxletixn=txn=itx=(it)1n=eiπ2nt1n0xaeixndx=eiπ2n0eiπa2ntan1nt1n1etdt=1neiπ2n(a+1)0ta+1n1etdt=1nΓ(a+1n)eiπ2n(a+1)f(a)=1nΓ(a+1n)cos(π(a+1)2n)f(a)=1n2Γ(a+1n)cos(π(a+1)2n)π2n2sin(π(a+1)2n)Γ(a+1n)Ψn=f(0)=1n2Γ(1n)cos(π2n)π2n2sin(π2n)Γ(1n)Ψ4=116Γ(14)cos(π8)π32Γ(14)sin(π8)=0cos(x4)logxdx

Leave a Reply

Your email address will not be published. Required fields are marked *