Question-163481 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 163481 by smallEinstein last updated on 07/Jan/22 Answered by Mathspace last updated on 07/Jan/22 Ψn=∫0∞cos(xn)logxdxletf(a)=∫0∞xacos(xn)dxf′(a)=∫0∞xalogxcos(xn)dx⇒f′(0)=∫0∞cos(xn)logxdxf(a)=Re(∫0∞xaeixndx)∫0∞xaeixndxletixn=−t⇒xn=it⇒x=(it)1n=eiπ2nt1n⇒∫0∞xaeixndx=eiπ2n∫0∞eiπa2ntan1nt1n−1e−tdt=1neiπ2n(a+1)∫0∞ta+1n−1e−tdt=1nΓ(a+1n)eiπ2n(a+1)⇒f(a)=1nΓ(a+1n)cos(π(a+1)2n)⇒f′(a)=1n2Γ′(a+1n)cos(π(a+1)2n)−π2n2sin(π(a+1)2n)Γ(a+1n)Ψn=f′(0)=1n2Γ′(1n)cos(π2n)−π2n2sin(π2n)Γ(1n)Ψ4=116Γ′(14)cos(π8)−π32Γ(14)sin(π8)=∫0∞cos(x4)logxdx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-97942Next Next post: 0-1-sin-2-ln-x-ln-x-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.