Question Number 163483 by Zaynal last updated on 07/Jan/22
Answered by alephzero last updated on 07/Jan/22
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left\{\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right\}{dx}\:=\:? \\ $$$$\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \:=\:\frac{{d}}{{dx}}\left(\frac{{d}}{{dx}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right) \\ $$$$\underline{\frac{{d}}{{dx}}\left({f}\left({g}\right)\right)\:=\:\frac{{d}}{{dg}}\left({f}\left({g}\right)\right)\:×\:\frac{{d}}{{dx}}\left({g}\right)} \\ $$$$\mathrm{Let}\:{g}\:=\:\mathrm{1}−{x}^{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{{d}}{{dx}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \:=\:\frac{{d}}{{dg}}\left({g}^{\mathrm{5}} \right)\:×\:\frac{{d}}{{dx}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:= \\ $$$$=\:\mathrm{5}{g}^{\mathrm{4}} \left(−\mathrm{2}{x}\right)\:=\:\mathrm{5}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \left(−\mathrm{2}{x}\right)\:= \\ $$$$=\:−\mathrm{10}{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \\ $$$$\frac{{d}}{{dx}}\left(−\mathrm{10}{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \right)\:=\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \:=\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}\:+\:\mathrm{2}} \:=\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} = \\ $$$$=\:\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{4}} \right)\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{4}} \right)\:= \\ $$$$=\:\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{6}} +{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{6}} +{x}^{\mathrm{8}} \:= \\ $$$$=\:\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{6}} +{x}^{\mathrm{8}} \\ $$$$−\mathrm{10}{x}\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{6}} +{x}^{\mathrm{8}} \right)\:=\: \\ $$$$=\:−\mathrm{10}{x}\:+\:\mathrm{40}{x}^{\mathrm{3}} \:−\:\mathrm{60}{x}^{\mathrm{5}} \:+\:\mathrm{40}{x}^{\mathrm{7}} \:−\:\mathrm{10}{x}^{\mathrm{9}} \\ $$$$\frac{{d}}{{dx}}\left(−\mathrm{10}{x}+\mathrm{40}{x}^{\mathrm{3}} −\mathrm{60}{x}^{\mathrm{5}} +\mathrm{40}{x}^{\mathrm{7}} −\mathrm{10}{x}^{\mathrm{9}} \right)\:= \\ $$$$\frac{{d}}{{dx}}\left(−\mathrm{10}{x}\right)+\frac{{d}}{{dx}}\left(\mathrm{40}{x}^{\mathrm{3}} \right)−\frac{{d}}{{dx}}\left(\mathrm{60}{x}^{\mathrm{5}} \right)+\frac{{d}}{{dx}}\left(\mathrm{40}{x}^{\mathrm{7}} \right)− \\ $$$$−\frac{{d}}{{dx}}\left(\mathrm{10}{x}^{\mathrm{9}} \right)\:=\:−\mathrm{10}+\mathrm{120}{x}^{\mathrm{2}} −\mathrm{300}{x}^{\mathrm{4}} + \\ $$$$+\mathrm{280}{x}^{\mathrm{6}} −\mathrm{90}{x}^{\mathrm{8}} \:= \\ $$$$=\:−\mathrm{90}{x}^{\mathrm{8}} +\mathrm{280}{x}^{\mathrm{6}} −\mathrm{300}{x}^{\mathrm{4}} +\mathrm{120}{x}^{\mathrm{2}} −\mathrm{10} \\ $$$$\int\mathrm{4}{x}^{\mathrm{3}} \left(−\mathrm{90}{x}^{\mathrm{8}} +\mathrm{280}{x}^{\mathrm{6}} −\mathrm{300}{x}^{\mathrm{4}} +\mathrm{120}{x}^{\mathrm{2}} −\mathrm{10}\right){dx}\:= \\ $$$$=\int−\mathrm{360}{x}^{\mathrm{11}} +\mathrm{1120}{x}^{\mathrm{9}} −\mathrm{1200}{x}^{\mathrm{7}} +\mathrm{480}{x}^{\mathrm{5}} − \\ $$$$−\mathrm{40}{x}^{\mathrm{3}} {dx}\:=\:−\int\mathrm{360}{x}^{\mathrm{11}} {dx}+\int\mathrm{1120}{x}^{\mathrm{9}} {dx}− \\ $$$$−\int\mathrm{1200}{x}^{\mathrm{7}} {dx}+\int\mathrm{480}{x}^{\mathrm{5}} {dx}−\int\mathrm{40}{x}^{\mathrm{3}} {dx}= \\ $$$$−\mathrm{30}{x}^{\mathrm{12}} +\mathrm{112}{x}^{\mathrm{10}} −\mathrm{150}{x}^{\mathrm{8}} +\mathrm{80}{x}^{\mathrm{6}} −\mathrm{10}{x}^{\mathrm{4}} +\mathrm{C} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left(−\mathrm{90}{x}^{\mathrm{8}} +\mathrm{280}{x}^{\mathrm{6}} −\mathrm{300}{x}^{\mathrm{4}} +\mathrm{120}{x}^{\mathrm{2}} −\mathrm{10}\right){dx}\:= \\ $$$$−\mathrm{30}+\mathrm{112}−\mathrm{150}+\mathrm{80}−\mathrm{10}−\left(−\mathrm{10}\right)\:= \\ $$$$=\:\underline{\mathrm{12}} \\ $$
Commented by Zaynal last updated on 07/Jan/22
$$\mathrm{ans}\:\mathrm{is}\:\mathrm{2} \\ $$
Answered by mr W last updated on 07/Jan/22
$$\frac{{d}}{{dx}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} =\mathrm{5}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \left(−\mathrm{2}{x}\right) \\ $$$$\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} =−\mathrm{10}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} +\mathrm{80}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left\{−\mathrm{10}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} +\mathrm{80}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} \right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}{x}^{\mathrm{2}} \left\{−\mathrm{10}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} +\mathrm{80}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} \right\}{d}\left({x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{20}\int_{\mathrm{0}} ^{\mathrm{1}} {u}\left(\mathrm{9}{u}−\mathrm{1}\right)\left(\mathrm{1}−{u}\right)^{\mathrm{3}} {du} \\ $$$$=\mathrm{20}\int_{\mathrm{0}} ^{\mathrm{1}} \left({u}−\mathrm{1}+\mathrm{1}\right)\left(−\mathrm{9}\left({u}−\mathrm{1}\right)−\mathrm{8}\right)\left({u}−\mathrm{1}\right)^{\mathrm{3}} {d}\left({u}−\mathrm{1}\right) \\ $$$$=\mathrm{20}\int_{−\mathrm{1}} ^{\mathrm{0}} \left({t}+\mathrm{1}\right)\left(−\mathrm{9}{t}−\mathrm{8}\right){t}^{\mathrm{3}} {dt} \\ $$$$=\mathrm{20}\int_{\mathrm{0}} ^{−\mathrm{1}} \left({t}+\mathrm{1}\right)\left(\mathrm{9}{t}+\mathrm{8}\right){t}^{\mathrm{3}} {dt} \\ $$$$=\mathrm{20}\int_{\mathrm{0}} ^{−\mathrm{1}} \left(\mathrm{9}{t}^{\mathrm{5}} +\mathrm{17}{t}^{\mathrm{4}} +\mathrm{8}{t}^{\mathrm{3}} \right){dt} \\ $$$$=\mathrm{20}\left[\frac{\mathrm{3}{t}^{\mathrm{6}} }{\mathrm{2}}+\frac{\mathrm{17}{t}^{\mathrm{5}} }{\mathrm{5}}+\mathrm{2}{t}^{\mathrm{4}} \right]_{\mathrm{0}} ^{−\mathrm{1}} {dt} \\ $$$$=\mathrm{20}\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{17}}{\mathrm{5}}+\mathrm{2}\right) \\ $$$$=\mathrm{20}×\frac{\mathrm{1}}{\mathrm{10}} \\ $$$$=\mathrm{2} \\ $$
Answered by Ar Brandon last updated on 07/Jan/22
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left\{\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right\}{dx} \\ $$$$\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} =−\mathrm{10}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} +\mathrm{80}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$$${I}=−\mathrm{40}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} {dx}+\mathrm{320}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{5}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} {dx} \\ $$$$\:\:\:=−\mathrm{20}\int_{\mathrm{0}} ^{\mathrm{1}} {u}\left(\mathrm{1}−{u}\right)^{\mathrm{4}} {du}+\mathrm{160}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\mathrm{2}} \left(\mathrm{1}−{u}\right)^{\mathrm{3}} {du} \\ $$$$\:\:\:=−\mathrm{20}\beta\left(\mathrm{2},\:\mathrm{5}\right)+\mathrm{160}\beta\left(\mathrm{3},\:\mathrm{4}\right)=−\mathrm{20}\centerdot\frac{\mathrm{4}!}{\mathrm{6}!}+\mathrm{160}\centerdot\frac{\mathrm{2}×\mathrm{3}!}{\mathrm{6}!} \\ $$$$\:\:\:=−\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{8}}{\mathrm{3}}=\frac{\mathrm{6}}{\mathrm{3}}=\mathrm{2} \\ $$
Answered by ajfour last updated on 07/Jan/22
$${x}^{\mathrm{2}} ={t} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{2}{t}\left\{\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right\}{dt} \\ $$$$=\int\frac{{d}}{{dx}}\left\{\mathrm{5}\left(−\mathrm{2}{x}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{4}} \right\}\mathrm{2}{tdt} \\ $$$$=\mathrm{5}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\mathrm{16}{t}\left(\mathrm{1}−{t}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{1}−{t}\right)^{\mathrm{4}} \right\}\left(\mathrm{2}{tdt}\right) \\ $$$$=\mathrm{10}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\mathrm{16}\left(\mathrm{1}−{t}\right){t}^{\mathrm{3}} −\mathrm{2}{t}^{\mathrm{4}} \right\}\left(\mathrm{1}−{t}\right){dt} \\ $$$$=\mathrm{10}\int\left\{\mathrm{16}{t}^{\mathrm{3}} −\mathrm{18}{t}^{\mathrm{4}} \right)\left(\mathrm{1}−{t}\right){dt} \\ $$$$=\mathrm{10}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{16}{t}^{\mathrm{3}} −\mathrm{16}{t}^{\mathrm{4}} −\mathrm{18}{t}^{\mathrm{4}} +\mathrm{18}{t}^{\mathrm{5}} \right){dt} \\ $$$$=\mathrm{10}\left[\mathrm{4}−\frac{\mathrm{34}}{\mathrm{5}}+\mathrm{3}\right]=\mathrm{70}−\mathrm{68}\:=\:\mathrm{2}\:\:\left({got}\:{it}\right). \\ $$$$ \\ $$