Question Number 163522 by nurtani last updated on 07/Jan/22
Answered by ajfour last updated on 08/Jan/22
$${since}\:{A}\:{is}\:{not}\:{fixed},\:{let}\:\angle{C}=\mathrm{90}°. \\ $$$${AC}=\mathrm{3}{h},\:{BC}=\mathrm{6} \\ $$$${A}_{\bigtriangleup{ABC}} =\mathrm{9}{h} \\ $$$${eq}.\:{of}\:{AD}:\:\:\frac{{x}}{\mathrm{5}}+\frac{{y}}{\mathrm{3}{h}}=\mathrm{1} \\ $$$${eq}.\:{of}\:{BH}:\:\frac{{x}}{\mathrm{6}}+\frac{{y}}{\mathrm{2}{h}}=\mathrm{1} \\ $$$$\Rightarrow\:{y}_{{G}} \left(\frac{\mathrm{3}}{{h}}−\frac{\mathrm{5}}{\mathrm{3}{h}}\right)=\mathrm{1} \\ $$$${y}_{{G}} =\frac{\mathrm{3}{h}}{\mathrm{4}} \\ $$$${eq}.\:{of}\:{AE}\::\:\:\:\frac{{x}}{\mathrm{3}}+\frac{{y}}{\mathrm{3}{h}}=\mathrm{1} \\ $$$${y}_{{F}} \left(\frac{\mathrm{1}}{{h}}−\frac{\mathrm{1}}{\mathrm{3}{h}}\right)=\mathrm{1} \\ $$$${y}_{{F}} =\frac{\mathrm{3}{h}}{\mathrm{2}} \\ $$$${reqd}\:\:{ratio}=\frac{\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{3}{h}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}{h}}{\mathrm{4}}\right)}{\mathrm{9}{h}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{15}{h}}{\mathrm{8}}×\frac{\mathrm{1}}{\mathrm{9}{h}}=\frac{\mathrm{5}}{\mathrm{24}} \\ $$
Commented by Tawa11 last updated on 09/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 07/Jan/22
Commented by Tawa11 last updated on 09/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 07/Jan/22
$$\frac{{DP}}{{DC}}=\frac{{AH}}{{AC}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${DP}=\frac{{DC}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{5}{BC}}{\mathrm{6}}=\frac{\mathrm{5}{BC}}{\mathrm{18}}=\frac{\mathrm{5}×\mathrm{6}{BD}}{\mathrm{18}}=\frac{\mathrm{5}{BD}}{\mathrm{3}} \\ $$$$\frac{{BG}}{{GH}}=\frac{{BD}}{{DP}}=\frac{\mathrm{3}}{\mathrm{5}}\:\Rightarrow\frac{{BG}}{{BH}}=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\frac{{EQ}}{{EC}}=\frac{{AH}}{{AC}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${EQ}=\frac{{EC}}{\mathrm{3}}=\frac{{BE}}{\mathrm{3}} \\ $$$$\frac{{FH}}{{BF}}=\frac{{EQ}}{{BE}}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\frac{{FH}}{{BH}}=\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{2}}{\mathrm{8}} \\ $$$$\frac{{GF}}{{BH}}=\frac{\mathrm{8}−\mathrm{3}−\mathrm{2}}{\mathrm{8}}=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\left[{AGF}\right]=\frac{\mathrm{3}}{\mathrm{8}}\left[{ABH}\right]=\frac{\mathrm{3}}{\mathrm{8}}×\frac{\mathrm{1}}{\mathrm{3}}\left[{ABC}\right]=\frac{\left[{ABC}\right]}{\mathrm{8}} \\ $$$$\left[{ADB}\right]=\frac{\mathrm{2}}{\mathrm{6}}\left[{ABC}\right]=\frac{\left[{ABC}\right]}{\mathrm{3}} \\ $$$$\left[{DGFE}\right]=\left[{ADB}\right]−\left[{AGF}\right]=\frac{\left[{ABC}\right]}{\mathrm{3}}−\frac{\left[{ABC}\right]}{\mathrm{8}}=\frac{\mathrm{5}}{\mathrm{24}}\left[{ABC}\right] \\ $$$$\Rightarrow\frac{\left[{DGFE}\right]}{\left[{ABC}\right]}=\frac{\mathrm{5}}{\mathrm{24}} \\ $$
Commented by nurtani last updated on 08/Jan/22
nice Mr W, thank you
Answered by mr W last updated on 08/Jan/22
$$\underline{\boldsymbol{{alternative}}\:\boldsymbol{{method}}} \\ $$$$\frac{{AG}}{{AD}}=\frac{\mathrm{1}×\mathrm{6}}{\mathrm{1}×\mathrm{6}+\mathrm{2}×\mathrm{1}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{{AF}}{{AE}}=\frac{\mathrm{1}×\mathrm{6}}{\mathrm{1}×\mathrm{6}+\mathrm{2}×\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left[{AGF}\right]=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}}×\left[{ADE}\right]=\frac{\mathrm{3}}{\mathrm{8}}\left[{ADE}\right] \\ $$$$\left[{DGFE}\right]=\frac{\mathrm{5}}{\mathrm{8}}\left[{ADE}\right]=\frac{\mathrm{5}}{\mathrm{8}}×\frac{\left[{ABC}\right]}{\mathrm{3}}=\frac{\mathrm{5}\left[{ABC}\right]}{\mathrm{24}} \\ $$$$\frac{\left[{DGFE}\right]}{\left[{ABC}\right]}=\frac{\mathrm{5}}{\mathrm{24}} \\ $$
Commented by mr W last updated on 09/Jan/22