Menu Close

Question-163587




Question Number 163587 by HongKing last updated on 08/Jan/22
Answered by MJS_new last updated on 08/Jan/22
∫(x/((x+1)(x^2 +1)(a^2 x^2 +1)))dx=  =−(1/(2(a^2 +1)))∫(dx/(x+1))−(1/(2(a^2 −1)))∫((x+1)/(x^2 +1))dx+(a^2 /(a^4 −1))∫(dx/(a^2 x^2 +1))=  =−(1/(2(a^2 +1)))ln ∣x+1∣ −(1/(4(a^2 −1)))ln (x^2 +1) −(1/(2(a^2 −1)))arctan x +(a^2 /(2(a^4 −1)))ln (a^2 x^2 +1) +(a/(a^4 −1))arctan (ax) +C  a>0: Ω(a)=(a^2 /((a^4 −1)))ln a −(((a−1)π)/(4(a+1)(a^2 +1))) and lim Ω(a) =(1/4)_(a→1)   a≤0: Ω(a)∉R
x(x+1)(x2+1)(a2x2+1)dx==12(a2+1)dxx+112(a21)x+1x2+1dx+a2a41dxa2x2+1==12(a2+1)lnx+114(a21)ln(x2+1)12(a21)arctanx+a22(a41)ln(a2x2+1)+aa41arctan(ax)+Ca>0:Ω(a)=a2(a41)lna(a1)π4(a+1)(a2+1)andlimΩ(a)=14a1a0:Ω(a)R
Commented by HongKing last updated on 08/Jan/22
thank you so much my dear Sir cool
thankyousomuchmydearSircool

Leave a Reply

Your email address will not be published. Required fields are marked *