Menu Close

Question-163656




Question Number 163656 by mnjuly1970 last updated on 09/Jan/22
Answered by mr W last updated on 09/Jan/22
Commented by mr W last updated on 09/Jan/22
m=(√(a^2 −h_1 ^2 ))+(√(b^2 −h_1 ^2 ))  m−(√(a^2 −h_1 ^2 ))=(√(b^2 −h_1 ^2 ))  m^2 +a^2 −h_1 ^2 −2m(√(a^2 −h_1 ^2 ))=b^2 −h_1 ^2   m^2 +a^2 −b^2 =2m(√(a^2 −h_1 ^2 ))  ⇒(√(a^2 −h_1 ^2 ))=((m^2 +a^2 −b^2 )/(2m))  similarly  ⇒(√(p^2 −h_2 ^2 ))=((n^2 +p^2 −q^2 )/(2n))    (√(p^2 −h_2 ^2 ))−(√(a^2 −h_1 ^2 ))=((n−m)/2)  ((n^2 +p^2 −q^2 )/(2n))−((m^2 +a^2 −b^2 )/(2m))=((n−m)/2)  ((p^2 −q^2 )/n)−((a^2 −b^2 )/m)=0  ⇒((a^2 −b^2 )/(p^2 −q^2 ))=(m/n)
$${m}=\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} } \\ $$$${m}−\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} }=\sqrt{{b}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} } \\ $$$${m}^{\mathrm{2}} +{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{m}\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} }={b}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{2}{m}\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} } \\ $$$$\Rightarrow\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} }=\frac{{m}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{m}} \\ $$$${similarly} \\ $$$$\Rightarrow\sqrt{{p}^{\mathrm{2}} −{h}_{\mathrm{2}} ^{\mathrm{2}} }=\frac{{n}^{\mathrm{2}} +{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}{n}} \\ $$$$ \\ $$$$\sqrt{{p}^{\mathrm{2}} −{h}_{\mathrm{2}} ^{\mathrm{2}} }−\sqrt{{a}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} }=\frac{{n}−{m}}{\mathrm{2}} \\ $$$$\frac{{n}^{\mathrm{2}} +{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}{n}}−\frac{{m}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{m}}=\frac{{n}−{m}}{\mathrm{2}} \\ $$$$\frac{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{{n}}−\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{m}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }=\frac{{m}}{{n}} \\ $$
Commented by mnjuly1970 last updated on 09/Jan/22
    very nice solution sir  W...thank  you so much...
$$\:\:\:\:{very}\:{nice}\:{solution}\:\mathrm{sir}\:\:\mathrm{W}…\mathrm{thank} \\ $$$$\mathrm{you}\:\mathrm{so}\:\mathrm{much}… \\ $$
Commented by Tawa11 last updated on 09/Jan/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *