Menu Close

Question-163736




Question Number 163736 by HongKing last updated on 09/Jan/22
Answered by mr W last updated on 10/Jan/22
Commented by mr W last updated on 10/Jan/22
R=(a/(2 sin A))  Δ=((bc sin A)/2)  r=((2Δ)/(a+b+c))=((bc sin A)/(a+b+c))  OI//AB ⇔ R cos A=r  (a/(2 sin A)) cos A=((bc sin A)/(a+b+c))  cos A=((2bc sin^2  A)/(a(a+b+c)))  cos A=((2bc(1−cos A)(1+cos A))/(a(a+b+c)))  ((b^2 +c^2 −a^2 )/(2bc))=((2bc(1−((b^2 +c^2 −a^2 )/(2bc)))(1+((b^2 +c^2 −a^2 )/(2bc))))/(a(a+b+c)))  b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ][(b+c)^2 −a^2 ])/(a(a+b+c)))  b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ](b+c−a))/a)  (b+c)a^2 −2bca−(b^2 −c^2 )(b−c)=0  a=((bc+(√(b^2 c^2 +(b+c)(b^2 −c^2 )(b−c))))/(b+c))  a=((bc+(√(b^2 c^2 +(b^2 −c^2 )^2 )))/(b+c))  ⇒a=((bc+(√(b^4 +c^4 −b^2 c^2 )))/(b+c)) ✓
R=a2sinAΔ=bcsinA2r=2Δa+b+c=bcsinAa+b+cOI//ABRcosA=ra2sinAcosA=bcsinAa+b+ccosA=2bcsin2Aa(a+b+c)cosA=2bc(1cosA)(1+cosA)a(a+b+c)b2+c2a22bc=2bc(1b2+c2a22bc)(1+b2+c2a22bc)a(a+b+c)b2+c2a2=[a2(bc)2][(b+c)2a2]a(a+b+c)b2+c2a2=[a2(bc)2](b+ca)a(b+c)a22bca(b2c2)(bc)=0a=bc+b2c2+(b+c)(b2c2)(bc)b+ca=bc+b2c2+(b2c2)2b+ca=bc+b4+c4b2c2b+c
Commented by Tawa11 last updated on 10/Jan/22
Great sir
Greatsir
Commented by HongKing last updated on 10/Jan/22
very nice my dear Sir thank you so much
verynicemydearSirthankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *