Question Number 163736 by HongKing last updated on 09/Jan/22

Answered by mr W last updated on 10/Jan/22

Commented by mr W last updated on 10/Jan/22
![R=(a/(2 sin A)) Δ=((bc sin A)/2) r=((2Δ)/(a+b+c))=((bc sin A)/(a+b+c)) OI//AB ⇔ R cos A=r (a/(2 sin A)) cos A=((bc sin A)/(a+b+c)) cos A=((2bc sin^2 A)/(a(a+b+c))) cos A=((2bc(1−cos A)(1+cos A))/(a(a+b+c))) ((b^2 +c^2 −a^2 )/(2bc))=((2bc(1−((b^2 +c^2 −a^2 )/(2bc)))(1+((b^2 +c^2 −a^2 )/(2bc))))/(a(a+b+c))) b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ][(b+c)^2 −a^2 ])/(a(a+b+c))) b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ](b+c−a))/a) (b+c)a^2 −2bca−(b^2 −c^2 )(b−c)=0 a=((bc+(√(b^2 c^2 +(b+c)(b^2 −c^2 )(b−c))))/(b+c)) a=((bc+(√(b^2 c^2 +(b^2 −c^2 )^2 )))/(b+c)) ⇒a=((bc+(√(b^4 +c^4 −b^2 c^2 )))/(b+c)) ✓](https://www.tinkutara.com/question/Q163774.png)
Commented by Tawa11 last updated on 10/Jan/22

Commented by HongKing last updated on 10/Jan/22
