Menu Close

Question-163782




Question Number 163782 by bekzodjumayev last updated on 10/Jan/22
Commented by bekzodjumayev last updated on 10/Jan/22
Please help
$${Please}\:{help} \\ $$
Answered by Ar Brandon last updated on 10/Jan/22
L=lim_(x→−1) ((x^n −nx+(1−n))/((x+1)^2 ))      =lim_(t→0) (((t−1)^n −n(t−1)+(1−n))/t^2 ) , n odd⇒ (−1)^n =−1      =lim_(t→0) (((−1)^n (1−nt−((n(n−1))/2)t^2 )−nt+n+1−n)/t^2 )      =lim_(t→0) ((−1+nt+((n(n−1))/2)t^2 −nt+1)/t^2 )      =lim_(t→0) ((n(n−1)t^2 )/(2t^2 ))=((n(n−1))/2)
$$\mathcal{L}=\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{{x}^{{n}} −{nx}+\left(\mathrm{1}−{n}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({t}−\mathrm{1}\right)^{{n}} −{n}\left({t}−\mathrm{1}\right)+\left(\mathrm{1}−{n}\right)}{{t}^{\mathrm{2}} }\:,\:{n}\:\mathrm{odd}\Rightarrow\:\left(−\mathrm{1}\right)^{{n}} =−\mathrm{1} \\ $$$$\:\:\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{1}−{nt}−\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} \right)−{nt}+{n}+\mathrm{1}−{n}}{{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{1}+{nt}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{2}} −{nt}+\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{n}\left({n}−\mathrm{1}\right){t}^{\mathrm{2}} }{\mathrm{2}{t}^{\mathrm{2}} }=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$
Commented by bekzodjumayev last updated on 11/Jan/22
Thank you
$${Thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *