Question Number 163812 by mathlove last updated on 11/Jan/22
Answered by cortano1 last updated on 11/Jan/22
$$\:{p}\left({x}\right)=\:{x}^{\mathrm{3}} +\mathrm{1} \\ $$$$\:{p}\left(\mathrm{4}\right)=\:\mathrm{65} \\ $$
Commented by mathlove last updated on 11/Jan/22
$${how}? \\ $$
Commented by Rasheed.Sindhi last updated on 11/Jan/22
$$\:\:\:\:\:\:\:\:\:\:\:\:\mathcal{T}{o}\:{whom} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{who}\:{liked}\:{the}\:{above}\:{post} \\ $$$${Would}\:{you}\:{like}\:{to}\:{tell}\:{the}\:{reason}\:{of} \\ $$$${liking}\:{please}? \\ $$
Commented by mr W last updated on 11/Jan/22
$${maybe}\:{he}\:{just}\:{also}\:{wanted}\:{to}\:{know} \\ $$$$“{how}''.\:{in}\:{this}\:{forum}\:{many}\:{people} \\ $$$${use}\:“{like}''\:{not}\:{to}\:{show}\:{that}\:{they}\:{really} \\ $$$${like}\:{a}\:{post}.\:{i}\:{think}\:{many}\:{people}\:{give} \\ $$$${themselves}\:{a}\:{like}\:{such}\:{that}\:{their} \\ $$$${post}\:{can}\:{not}\:{be}\:{red}\:{flagged}\:{or}\:{for}\:{what} \\ $$$${who}\:{knows}. \\ $$
Commented by Rasheed.Sindhi last updated on 12/Jan/22
$$\mathcal{M}{aybe}\:{s}/{he}\:{has}\:{given}\:{a}\:{like}\:{to}\:{increase} \\ $$$${the}\:{importance}\:{of}\:{the}\:{post}\:{but}\:{ultimately} \\ $$$${it}'{ll}\:{be}\:{the}\:{cause}\:{to}\:{decrease}\:{importance} \\ $$$${of}\:'{likes}'\:{itself}! \\ $$
Answered by Ar Brandon last updated on 11/Jan/22
$${p}\left(\mathrm{3}\right)=\mathrm{28}\:\mathrm{therefore}\:{p}\left({x}\right)\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}-\mathrm{zero}\:\mathrm{polynomial}. \\ $$$$\mathrm{Let}\:{p}\left({x}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +\centerdot\centerdot\centerdot+{a}_{{n}} {x}^{{n}} ,\:{a}_{{n}} \neq\mathrm{0} \\ $$$$\mathrm{Suppose}\:\mathrm{that}\:{p}\left({x}\right)+{p}\left(\frac{\mathrm{1}}{{x}}\right)={p}\left({x}\right){p}\left(\frac{\mathrm{1}}{{x}}\right)\:\mathrm{for}\:\mathrm{all}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{Then}\:\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} +\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }=\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }\right) \\ $$$$\mathrm{Multiplying}\:\mathrm{through}\:\mathrm{by}\:{x}^{{n}} ,\:\mathrm{we}\:\mathrm{get}\:\mathrm{that} \\ $$$$\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}+\mathrm{r}} +\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} =\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} \right) \\ $$$$\mathrm{That}\:\mathrm{is}, \\ $$$$\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}+\mathrm{1}} +\centerdot\centerdot\centerdot{a}_{{n}} {x}^{\mathrm{2}{n}} \right)+\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\:\:\:\:\:\:=\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+\centerdot\centerdot\centerdot{a}_{{n}} {x}^{{n}} \right)\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\mathrm{Equating}\:\mathrm{the}\:\mathrm{corresponding}\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{powers}\:\mathrm{of}\:{x}, \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}} \overset{{x}^{\mathrm{0}} } {=}{a}_{\mathrm{0}} {a}_{{n}} ,\:{a}_{{n}−\mathrm{1}} \overset{{x}^{\mathrm{1}} } {=}{a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} \overset{{x}^{\mathrm{2}} } {=}{a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}{a}_{\mathrm{0}} \overset{{x}^{{n}} } {=}{a}_{\mathrm{0}} ^{\mathrm{2}} +{a}_{{n}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}} \overset{{x}^{\mathrm{2}{n}} } {=}{a}_{\mathrm{0}} {a}_{{n}} \Rightarrow{a}_{\mathrm{0}} =\mathrm{1}\:\left(\mathrm{since}\:{a}_{{n}} \neq\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{1}} ={a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \Rightarrow{a}_{\mathrm{1}} {a}_{{n}} =\mathrm{0}\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \Rightarrow{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{{n}−\mathrm{2}} \Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Continuing}\:\mathrm{this}\:\mathrm{process},\:\mathrm{we}\:\mathrm{get}\:\mathrm{that}\:{a}_{{n}−\mathrm{1}} =\mathrm{0}\:\mathrm{and}\:\mathrm{2}=\mathrm{1}+{a}_{{n}} ^{\mathrm{2}} . \\ $$$$\mathrm{Hence}\:{a}_{{n}} =\pm\mathrm{1}.\:\mathrm{Therefore} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\left({x}\right)=\mathrm{1}\pm{x}^{{n}} \\ $$$$\mathrm{Since}\:\mathrm{we}\:\mathrm{are}\:\mathrm{given}\:\mathrm{that}\:{p}\left(\mathrm{3}\right)=\mathrm{28}\:\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{28}=\mathrm{1}\pm\mathrm{3}^{\mathrm{n}} \\ $$$$\mathrm{Therefore}\:{p}\left({x}\right)\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{1}−{x}^{{n}} .\:\mathrm{Thus},\:{p}\left({x}\right)=\mathrm{1}+{x}^{{n}} \:\mathrm{and} \\ $$$$\mathrm{28}=\mathrm{1}+\mathrm{3}^{{n}} \:\mathrm{and}\:\mathrm{hence}\:{n}=\mathrm{3}.\:\mathrm{So}\:{p}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{3}} \:\mathrm{and}\:{p}\left(\mathrm{4}\right)=\mathrm{65}. \\ $$
Commented by mr W last updated on 11/Jan/22
$${good}\:{solution}! \\ $$
Commented by Ar Brandon last updated on 11/Jan/22
Commented by Tawa11 last updated on 11/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$