Menu Close

Question-163921




Question Number 163921 by ajfour last updated on 11/Jan/22
Answered by mr W last updated on 12/Jan/22
R=radius of big circles  r=radius of small circles  semi diagonal=R+(√2)R=(√((R+r)^2 −R^2 ))+(√2)r  ((√2)+1)R−(√2)r=(√(2Rr+r^2 ))  r^2 −2((√2)+3)Rr+((√2)+1)^2 R^2 =0  (r/R)=(√2)+3−(√(((√2)+3)^2 −((√2)+1)^2 ))  ⇒(r/R)=(√2)+3−2(√((√2)+2))  area of parallelogram:  A_p =2R(√((R+r)^2 −R^2 ))=2R(√(2Rr+r^2 ))  area of square:  A_s =2(R+(√2)R)^2   ratio  (A_s /A_p ) =((2(R+(√2)R)^2 )/(2R(√(2Rr+r^2 ))))=(((1+(√2))^2 )/( (√((2+(r/R))((r/R))))))  (A_s /A_p ) =((3+2(√2))/( (√((5+(√2)−2(√((√2)+2)))(3+(√2)−2(√((√2)+2)))))))  (A_s /A_p ) ≈4.169
R=radiusofbigcirclesr=radiusofsmallcirclessemidiagonal=R+2R=(R+r)2R2+2r(2+1)R2r=2Rr+r2r22(2+3)Rr+(2+1)2R2=0rR=2+3(2+3)2(2+1)2rR=2+322+2areaofparallelogram:Ap=2R(R+r)2R2=2R2Rr+r2areaofsquare:As=2(R+2R)2ratioAsAp=2(R+2R)22R2Rr+r2=(1+2)2(2+rR)(rR)AsAp=3+22(5+222+2)(3+222+2)AsAp4.169
Commented by Tawa11 last updated on 12/Jan/22
Great sir
Greatsir
Answered by ajfour last updated on 12/Jan/22
R+R(√2)=s(√2)  R+r+2(√(Rr))=2s  (√(r/R))+1=(√((2s)/R))  R=(2−(√2))s  r=R((√(2/(2−(√2))))−1)^2      =R((√(2+(√2)))−1)^2   A_p =4R(√((r+R)^2 −R^2 ))       =(4s^2 )(2−(√2))^2 {[((√(2+(√2)))−1)^2 +1]^2 −1}^(1/2)   (A_p /A_s )=(2−(√2))^2 {[((√(2+(√2)))−1)^2 +1]^2 −1}^(1/2)   ...
R+R2=s2R+r+2Rr=2srR+1=2sRR=(22)sr=R(2221)2=R(2+21)2Ap=4R(r+R)2R2=(4s2)(22)2{[(2+21)2+1]21}1/2ApAs=(22)2{[(2+21)2+1]21}1/2

Leave a Reply

Your email address will not be published. Required fields are marked *