Menu Close

Question-163954




Question Number 163954 by mnjuly1970 last updated on 12/Jan/22
Answered by mathmax by abdo last updated on 13/Jan/22
Ψ=2∫_0 ^∞  ((x^2  e^x )/(sh(2x)))dx =_(2x=t)   2∫_0 ^∞   ((t^2  e^(t/2) )/(4sh(t)))(dt/2)=(1/4)∫_0 ^∞  ((t^(2 ) e^(t/2) )/((e^t −e^(−t) )/2))dt  =(1/2)∫_0 ^∞  ((t^2 e^(t/2) )/(e^t −e^(−t) ))dt =(1/2)∫_0 ^∞  ((t^2 e^(−t+(t/2)) )/(1−e^(−2t) ))dt  (1/2)∫_0 ^∞  t^(2 )  e^(−(t/2))  Σ_(n=0) ^(∞ )  e^(−2nt)  dt  =(1/2)Σ_(n=0) ^∞ ∫_0 ^∞  t^(2 )  e^(−(t/2)−2nt)  dt  A_n =∫_0 ^∞  t^2  e^(−(2n+(1/2))t)  dt =_((2n+(1/2))t=z)  ∫_0 ^∞ (z^2 /((2n+(1/2))^2  )) e^(−z)  (dz/((2n+(1/2))))  =(1/((2n+(1/2))^3 ))∫_0 ^∞  z^2  e^(−z) dz =((Γ(3))/((2n+(1/2))^3 )) ⇒  Ψ=((2!)/2)Σ_(n=0) ^∞  (1/((2n+(1/2))^3 ))=8Σ_(n=0) ^∞  (1/((4n+1)^3 ))=(8/4^3 )Σ_(n=0) ^(∞ ) (1/((n+(1/4))^3 ))  rest to find this sum using digamma function....
Ψ=20x2exsh(2x)dx=2x=t20t2et24sh(t)dt2=140t2et2etet2dt=120t2et2etetdt=120t2et+t21e2tdt120t2et2n=0e2ntdt=12n=00t2et22ntdtAn=0t2e(2n+12)tdt=(2n+12)t=z0z2(2n+12)2ezdz(2n+12)=1(2n+12)30z2ezdz=Γ(3)(2n+12)3Ψ=2!2n=01(2n+12)3=8n=01(4n+1)3=843n=01(n+14)3resttofindthissumusingdigammafunction.
Answered by Lordose last updated on 13/Jan/22
  I = ∫_0 ^( ∞) ((x^2 e^x )/(sinh(x)cosh(x)dx)) = 2∫_0 ^( ∞) x^2 e^x csch(2x)dx  I =^(x=(x/2))  (1/2)∫_0 ^( ∞) ((x^2 e^(x/2) )/(e^x (1−e^(−2x) )))dx =^(x=−ln(x)) (1/2)∫_0 ^( 1) ((x^(−(1/2)) ln^2 (x))/(1−x^2 ))dx  I = (1/2)∫_0 ^( 1) ((x^(−(1/2)) ln^2 (x))/(1−x^2 ))dx =^(x=x^(1/2) ) (1/(16))∫_0 ^( 1) ((x^((1/4)−1) ln^2 (x))/(1−x))dx  −∫_0 ^( 1) ((t^(x−1) ln^2 (x))/(1−t))dx = 𝛙^((2)) (x)  I = −(1/(16))𝛙^((2)) ((1/4)) = (7/2)𝛇(3) + (𝛑^3 /8)  𝛂 = (7/2) , 𝛃 = (1/8)  ∅sE
I=0x2exsinh(x)cosh(x)dx=20x2excsch(2x)dxI=x=x2120x2ex2ex(1e2x)dx=x=ln(x)1201x12ln2(x)1x2dxI=1201x12ln2(x)1x2dx=x=x1211601x141ln2(x)1xdx01tx1ln2(x)1tdx=ψ(2)(x)I=116ψ(2)(14)=72ζ(3)+π38α=72,β=18sE
Commented by mnjuly1970 last updated on 13/Jan/22
mercry sir lordos
mercrysirlordos
Answered by mindispower last updated on 13/Jan/22
=∫_0 ^∞ ((4x^2 e^(−x) )/((1+e^(−2x) )(1−e^(−2x) )))dx  =2(∫_0 ^∞ ((x^2 e^(−x) )/(1+e^(−2x) ))dx+∫_0 ^∞ ((x^2 e^(−x) )/(1−e^(−2x) )))  =2Σ_(n≥0) (∫_0 ^∞ x^2 (−1)^n e^(−(1+2n)x) dx+∫_0 ^∞ x^2 e^(−(1+2n)dx)   =2Σ_(n≥0) (((−1)^n )/((2n+1)^3 ))Γ(3)+2Σ_(n≥0) (1/((1+2n)^3 ))Γ(3)  =4β(3)+4(ζ(3)−((ζ(3))/8))  =4β(3)+(7/2)ζ(3)=(π^3 /8)+(7/2)ζ(3)  a+b=((29)/8)
=04x2ex(1+e2x)(1e2x)dx=2(0x2ex1+e2xdx+0x2ex1e2x)=2n0(0x2(1)ne(1+2n)xdx+0x2e(1+2n)dx=2n0(1)n(2n+1)3Γ(3)+2n01(1+2n)3Γ(3)=4β(3)+4(ζ(3)ζ(3)8)=4β(3)+72ζ(3)=π38+72ζ(3)a+b=298
Commented by mnjuly1970 last updated on 13/Jan/22
   very nice solution as always  sir power...
verynicesolutionasalwayssirpower
Commented by mindispower last updated on 14/Jan/22
withe Pleasur nice day
withePleasurniceday
Commented by mnjuly1970 last updated on 14/Jan/22
Answered by mnjuly1970 last updated on 13/Jan/22

Leave a Reply

Your email address will not be published. Required fields are marked *