Menu Close

Question-164001




Question Number 164001 by bekzodjumayev last updated on 12/Jan/22
Commented by bekzodjumayev last updated on 12/Jan/22
Help
$${Help} \\ $$
Answered by mahdipoor last updated on 12/Jan/22
N=44...488..88+1  =4×(((10^(2002) −1)/9))×10^(2002) +8×(((10^(2002) −1)/9))+1  (4/9)(10^(2002) −1)(10^(2002) +2)+1=(4/9)(10^(4004) +10^(2002) −2)+1=  (1/9)(4×10^(4004) +4×10^(2002) +1)=  (1/9)(2×10^(2002) +1)^2   ⇒(√N)=(1/3)(2×10^(2002) +1)=6(((10^(2002) −1)/9))+1=  66..667   (2002 times 6 repaet)
$${N}=\mathrm{44}…\mathrm{488}..\mathrm{88}+\mathrm{1} \\ $$$$=\mathrm{4}×\left(\frac{\mathrm{10}^{\mathrm{2002}} −\mathrm{1}}{\mathrm{9}}\right)×\mathrm{10}^{\mathrm{2002}} +\mathrm{8}×\left(\frac{\mathrm{10}^{\mathrm{2002}} −\mathrm{1}}{\mathrm{9}}\right)+\mathrm{1} \\ $$$$\frac{\mathrm{4}}{\mathrm{9}}\left(\mathrm{10}^{\mathrm{2002}} −\mathrm{1}\right)\left(\mathrm{10}^{\mathrm{2002}} +\mathrm{2}\right)+\mathrm{1}=\frac{\mathrm{4}}{\mathrm{9}}\left(\mathrm{10}^{\mathrm{4004}} +\mathrm{10}^{\mathrm{2002}} −\mathrm{2}\right)+\mathrm{1}= \\ $$$$\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{4}×\mathrm{10}^{\mathrm{4004}} +\mathrm{4}×\mathrm{10}^{\mathrm{2002}} +\mathrm{1}\right)= \\ $$$$\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{2}×\mathrm{10}^{\mathrm{2002}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{{N}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}×\mathrm{10}^{\mathrm{2002}} +\mathrm{1}\right)=\mathrm{6}\left(\frac{\mathrm{10}^{\mathrm{2002}} −\mathrm{1}}{\mathrm{9}}\right)+\mathrm{1}= \\ $$$$\mathrm{66}..\mathrm{667}\:\:\:\left(\mathrm{2002}\:{times}\:\mathrm{6}\:{repaet}\right) \\ $$
Commented by bekzodjumayev last updated on 12/Jan/22
Thanks
$${Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *