Menu Close

Question-164027




Question Number 164027 by HongKing last updated on 13/Jan/22
Commented by HongKing last updated on 13/Jan/22
Yes my dear Sir
YesmydearSir
Commented by mr W last updated on 13/Jan/22
now i got it.  A is the number of roots of  f(f(f(....)))=x.  A=2^(2020−1) .
nowigotit.Aisthenumberofrootsoff(f(f(.)))=x.A=220201.
Answered by mr W last updated on 13/Jan/22
due to symmetry we just consider x≥0.  f(x)=2x(√(1−x^2 ))≥0  let x=sin θ with 0≤θ≤(π/2)  f(x)=2 sin θ (√(1−sin^2  θ))=2 sin θ cos θ=sin 2θ  f(f(x))=sin (2×2θ)=sin (2^2 θ)  f(f(f(...f(x)))_(n times) =sin (2^n θ)  f(f(f(...f(x)))_(n times) =x≥0  ⇒sin (2^n θ)=sin θ  ⇒2^n θ=2kπ+θ ⇒θ=((2kπ)/(2^n −1)) or  ⇒2^n θ=(2m+1)π−θ ⇒θ=(((2m+1)π)/(2^n +1))  θ=((2kπ)/(2^n −1))≤(π/2) ⇒0≤k≤((2^n −1)/4)  θ=(((2m+1)π)/(2^n +1))≤(π/2) ⇒0≤m≤((2^n +1)/4)−(1/2)  x=sin ((2kπ)/(2^n −1)) or  x=sin (((2k+1)π)/(2^n +1))   with 0≤k≤2^(n−2) −1 and  n=2020    totally we have A=2^(n−1) =2^(2019)  roots.    A (mod 1000)=288
duetosymmetrywejustconsiderx0.f(x)=2x1x20letx=sinθwith0θπ2f(x)=2sinθ1sin2θ=2sinθcosθ=sin2θf(f(x))=sin(2×2θ)=sin(22θ)Extra \left or missing \rightExtra \left or missing \rightsin(2nθ)=sinθ2nθ=2kπ+θθ=2kπ2n1or2nθ=(2m+1)πθθ=(2m+1)π2n+1θ=2kπ2n1π20k2n14θ=(2m+1)π2n+1π20m2n+1412x=sin2kπ2n1orx=sin(2k+1)π2n+1with0k2n21andn=2020totallywehaveA=2n1=22019roots.A(mod1000)=288
Commented by HongKing last updated on 13/Jan/22
perfect my dear Sir thank you so much
perfectmydearSirthankyousomuch
Commented by Rasheed.Sindhi last updated on 13/Jan/22
G_(  S  I_(!)   R ) ^(  R^( E ) A) T
GSI!RREAT

Leave a Reply

Your email address will not be published. Required fields are marked *