Menu Close

Question-164050




Question Number 164050 by mathlove last updated on 13/Jan/22
Answered by Ar Brandon last updated on 13/Jan/22
x−(1/8)>0≠1⇒x>(1/8)≠(9/8)....(1)  x^2 −(1/9)>0 ⇒x<−(1/3)∪x>(1/3) ...(2)  sin^(−1) (2−x)>0 ⇒2−x>0⇒x<2...(3)  (1), (2), (3)  ⇒S={x: (1/3)<x<(9/8)∪(9/8)<x<2}
$${x}−\frac{\mathrm{1}}{\mathrm{8}}>\mathrm{0}\neq\mathrm{1}\Rightarrow{x}>\frac{\mathrm{1}}{\mathrm{8}}\neq\frac{\mathrm{9}}{\mathrm{8}}….\left(\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{9}}>\mathrm{0}\:\Rightarrow{x}<−\frac{\mathrm{1}}{\mathrm{3}}\cup{x}>\frac{\mathrm{1}}{\mathrm{3}}\:…\left(\mathrm{2}\right) \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}−{x}\right)>\mathrm{0}\:\Rightarrow\mathrm{2}−{x}>\mathrm{0}\Rightarrow{x}<\mathrm{2}…\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{1}\right),\:\left(\mathrm{2}\right),\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow\mathrm{S}=\left\{{x}:\:\frac{\mathrm{1}}{\mathrm{3}}<{x}<\frac{\mathrm{9}}{\mathrm{8}}\cup\frac{\mathrm{9}}{\mathrm{8}}<{x}<\mathrm{2}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *