Question Number 164073 by mr W last updated on 13/Jan/22
Commented by mr W last updated on 13/Jan/22
$${are}\:{there}\:{other}\:{equilibrium}\:{positions} \\ $$$${for}\:{the}\:{rod}? \\ $$
Answered by ajfour last updated on 13/Jan/22
Commented by mr W last updated on 14/Jan/22
$${no}\:{sir}.\:{i}\:{mean}\:{it}\:{should}\:{be}\:{possible} \\ $$$${that}\:{the}\:{three}\:{forces}\:{on}\:{the}\:{rod}\:{are} \\ $$$${in}\:{equilibrium}\:{in}\:{a}\:{way}\:{without}\: \\ $$$${friction}\:{like}\:{this}: \\ $$
Commented by mr W last updated on 14/Jan/22
$${according}\:{to}\:{our}\:{experience}\:{in}\:{real} \\ $$$${life},\:{the}\:{rod}\:{can}\:{also}\:{rest}\:{in}\:{the}\:{bowl} \\ $$$${in}\:{a}\:{inclined}\:{position},\:{which}\:{is}\:{even} \\ $$$${more}\:{stable}.\:{in}\:{fact}\:{the}\:{horizontal}\: \\ $$$${position}\:{is}\:{even}\:{instable},\:{because}\:{we}\: \\ $$$${can}\:{hardly}\:{bring}\:{the}\:{rod}\:{to}\:{rest}\:{in}\:{a}\: \\ $$$${horizontal}\:{position}.\:{but}\:{we}\:{only}\:{need} \\ $$$${to}\:{release}\:{the}\:{rod}\:{in}\:{the}\:{bowl},\:{it}\:{will}\: \\ $$$${come}\:{to}\:{rest}\:{by}\:{itself}\:{in}\:{an}\:{inclined}\: \\ $$$${position}. \\ $$
Commented by ajfour last updated on 13/Jan/22
$${friction}\:{need}\:{be}\:{there},\:{then}\:{only} \\ $$$${it}\:{can}\:{rest}\:{in}\:{inclined}\:{way}\:{is}\:{what} \\ $$$${i}\:{conclude},\:{is}\:{that}\:{what}\:{you}\:{too}\: \\ $$$${mean},\:{sir}? \\ $$
Commented by mr W last updated on 14/Jan/22
Answered by mr W last updated on 14/Jan/22
Commented by mr W last updated on 14/Jan/22
$${parabola}\:{y}=\frac{{x}^{\mathrm{2}} }{{a}}\:{with}\:{a}=\mathrm{1}\:{here} \\ $$$${length}\:{of}\:{rod}\:{is}\:{b}. \\ $$$${C}={center}\:{of}\:{mass} \\ $$$${there}\:{are}\:{three}\:{forces}\:{acting}\:{on}\:{rod}: \\ $$$${normal}\:{contact}\:{forces}\:{N}_{\mathrm{1}} \:{and}\:{N}_{\mathrm{2}} , \\ $$$${and}\:{gravity}\:{of}\:{rod}\:{mg} \\ $$$${when}\:{the}\:{rod}\:{is}\:{in}\:{equilibrium},\:{all} \\ $$$${these}\:{three}\:{forces}\:{must}\:{intersect}\:{at} \\ $$$${one}\:{point}\:{S}. \\ $$$${say}\:{the}\:{end}\:{points}\:{of}\:{the}\:{rod}\:{are} \\ $$$${A}\left({p},\:\frac{{p}^{\mathrm{2}} }{{a}}\right),\:{B}\left({q},\:\frac{{q}^{\mathrm{2}} }{{a}}\right) \\ $$$$\mathrm{tan}\:\phi=−\frac{{dy}}{{dx}}\mid_{{x}={p}} =−\frac{\mathrm{2}{p}}{{a}} \\ $$$$\mathrm{tan}\:\varphi=\frac{{dy}}{{dx}}\mid_{{x}={q}} =\frac{\mathrm{2}{q}}{{a}} \\ $$$$\mathrm{tan}\:\theta=\frac{\frac{{q}^{\mathrm{2}} }{{a}}−\frac{{p}^{\mathrm{2}} }{{a}}}{{q}−{p}}=\frac{{q}^{\mathrm{2}} −{p}^{\mathrm{2}} }{{a}\left({q}−{p}\right)}=\frac{{q}+{p}}{{a}} \\ $$$$\alpha=\frac{\pi}{\mathrm{2}}−\phi−\theta \\ $$$$\beta=\frac{\pi}{\mathrm{2}}−\varphi+\theta \\ $$$$\frac{{SC}}{{AC}}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\phi}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\phi−\theta\right)}{\mathrm{sin}\:\phi}=\frac{\mathrm{cos}\:\left(\phi+\theta\right)}{\mathrm{sin}\:\phi} \\ $$$$\frac{{SC}}{{CB}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\varphi}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\varphi+\theta\right)}{\mathrm{sin}\:\varphi}=\frac{\mathrm{cos}\:\left(\varphi−\theta\right)}{\mathrm{sin}\:\varphi} \\ $$$${since}\:{AC}={CB}=\frac{{b}}{\mathrm{2}}, \\ $$$$\frac{\mathrm{cos}\:\left(\phi+\theta\right)}{\mathrm{sin}\:\phi}=\frac{\mathrm{cos}\:\left(\varphi−\theta\right)}{\mathrm{sin}\:\varphi} \\ $$$$\frac{\mathrm{cos}\:\phi\:\mathrm{cos}\:\theta−\mathrm{sin}\:\phi\:\mathrm{sin}\:\theta}{\mathrm{sin}\:\phi}=\frac{\mathrm{cos}\:\varphi\:\mathrm{cos}\:\theta+\mathrm{sin}\:\varphi\:\mathrm{sin}\:\theta}{\mathrm{sin}\:\varphi} \\ $$$$\frac{\mathrm{cos}\:\theta}{\mathrm{tan}\:\phi}−\mathrm{sin}\:\theta=\frac{\mathrm{cos}\:\theta}{\mathrm{tan}\:\varphi}+\mathrm{sin}\:\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\phi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$−\frac{{a}}{\mathrm{2}{p}}−\frac{{a}}{\mathrm{2}{q}}=\frac{\mathrm{2}\left({p}+{q}\right)}{{a}} \\ $$$$−\frac{{p}+{q}}{{pq}}=\frac{\mathrm{4}\left({p}+{q}\right)}{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{p}+{q}=\mathrm{0}\:\Rightarrow{p}=−{q}\:\Rightarrow{horizontal}\:{position} \\ $$$${or} \\ $$$$−\frac{\mathrm{1}}{{pq}}=\frac{\mathrm{4}}{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{pq}=−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\:{or}\:\left(−{p}\right){q}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\left({q}−{p}\right)^{\mathrm{2}} +\left(\frac{{q}^{\mathrm{2}} }{{a}}−\frac{{p}^{\mathrm{2}} }{{a}}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\left({q}−{p}\right)^{\mathrm{2}} +\frac{\left({q}−{p}\right)^{\mathrm{2}} \left({q}+{p}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }={b}^{\mathrm{2}} \\ $$$$\left({q}−{p}\right)^{\mathrm{2}} \left[\mathrm{1}+\frac{\left({q}+{p}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right]={b}^{\mathrm{2}} \\ $$$$\left({q}−{p}\right)^{\mathrm{2}} \left[\mathrm{1}+\frac{\left({q}−{p}\right)^{\mathrm{2}} −\mathrm{4}\left(−{p}\right){q}}{{a}^{\mathrm{2}} }\right]={b}^{\mathrm{2}} \\ $$$$\left({q}−{p}\right)^{\mathrm{2}} \left[\mathrm{1}+\frac{\left({q}−{p}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right]={b}^{\mathrm{2}} \\ $$$$\left({q}−{p}\right)^{\mathrm{4}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow{q}−{p}=\sqrt{{ab}} \\ $$$${q}\:{and}\:−{p}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −\sqrt{{ab}}{z}+\frac{{a}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow−{p}=\frac{\sqrt{{ab}}−\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{p}=−\frac{\sqrt{{ab}}−\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{q}=\frac{\sqrt{{ab}}+\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$${that}\:{means}\:{generally}\:{there}\:{exist}\: \\ $$$${two}\:{possible}\:{equilibrium}\:{positions}\: \\ $$$${for}\:{a}\:{rod}\:{in}\:{a}\:{bowl}: \\ $$$${position}\:\mathrm{1}:\:{horizontal}\: \\ $$$$\:\:\:\:\:\:\:{q}=−{p}=\frac{{b}}{\mathrm{2}} \\ $$$${position}\:\mathrm{2}:\:{inclined} \\ $$$$\:\:\:\:\:\:{p}=−\frac{\sqrt{{ab}}−\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{q}=\frac{\sqrt{{ab}}+\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$${only}\:{for}\:{a}\:{short}\:{rod}\:{with}\:{b}\leqslant{a},\:{the} \\ $$$${horizontal}\:{position}\:{is}\:{the}\:{only} \\ $$$${possible}\:{equilibrium}\:{position}. \\ $$
Commented by mr W last updated on 14/Jan/22
Commented by mr W last updated on 14/Jan/22
Commented by ajfour last updated on 14/Jan/22
$${excellent},\:{thank}\:{you}\:{sir}. \\ $$$${I}\:{shall}\:{attempt}\:{too}.. \\ $$
Commented by Tawa11 last updated on 15/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 17/Jan/22
Commented by mr W last updated on 16/Jan/22
$${we}\:{see}\:{that}\:{the}\:{inclined}\:{equilibrium} \\ $$$${position}\:{of}\:{the}\:{rod}\:{is}\:{the}\:{position} \\ $$$${where}\:{the}\:{center}\:{of}\:{mass}\:{of}\:{the}\:{rod} \\ $$$${is}\:{lowest}.\:{therefore}\:{it}'{s}\:{also}\:\:{the}\:{most} \\ $$$${stable}\:{position}. \\ $$$${see}\:{also}\:{Q}\mathrm{164178}. \\ $$
Commented by ajfour last updated on 16/Jan/22
$${This}\:{is}\:{really}\:{really}\:{Excellent}\:{sol}^{{n}} \:{sir}. \\ $$
Commented by mr W last updated on 16/Jan/22
$${thanks}\:{for}\:{reviewing}\:{sir}! \\ $$
Commented by mr W last updated on 17/Jan/22
$${interesting}: \\ $$$${at}\:{equilibrium}\:{positions},\:{we}\:{always} \\ $$$${have}\:{SA}\bot{SB}. \\ $$