Question Number 164206 by abdurehime last updated on 15/Jan/22
Commented by abdurehime last updated on 15/Jan/22
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}??? \\ $$
Commented by mr W last updated on 15/Jan/22
$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +…+{n}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$
Commented by abdurehime last updated on 15/Jan/22
$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}??\:\mathrm{show}\:\mathrm{me}\:\mathrm{the}\:\mathrm{process}\:\mathrm{please}? \\ $$$$ \\ $$
Commented by cortano1 last updated on 15/Jan/22
$${consider}\:\left({k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} =\:\mathrm{2}{k}+\mathrm{1} \\ $$$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\left({k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} \right)\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\:=\:\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}+{n} \\ $$$$\:{n}^{\mathrm{2}} +{n}\:=\mathrm{2}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\:\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\:=\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}} \\ $$$$ \\ $$$$\:\left({k}+\mathrm{1}\right)^{\mathrm{3}} −{k}^{\mathrm{3}} =\:\mathrm{3}{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{1} \\ $$$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\left({k}+\mathrm{1}\right)^{\mathrm{3}} −{k}^{\mathrm{3}} \right)=\:\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}+\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}+{n} \\ $$$$\:\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}=\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} +\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}}{\mathrm{2}}\:+{n} \\ $$$$\:\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \:=\:{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}−\left(\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{5}{n}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \:=\:\frac{\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}}{\mathrm{6}}\:=\frac{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$
Commented by bobhans last updated on 16/Jan/22
$$\:\mathrm{nice}\:! \\ $$
Answered by MJS_new last updated on 15/Jan/22
$$\mathrm{one}\:\mathrm{possible}\:\mathrm{process}: \\ $$$${s}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}{j}^{\mathrm{2}} \\ $$$$\mathrm{make}\:\mathrm{a}\:\mathrm{list}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{few}\:{s}_{{n}} \\ $$$$\mathrm{write}\:\sigma_{{n}} ^{\left(\mathrm{1}\right)} ={s}_{{n}+\mathrm{1}} −{s}_{{n}} \:\mathrm{below} \\ $$$$\mathrm{write}\:\sigma_{{n}} ^{\left(\mathrm{2}\right)} =\sigma_{{n}+\mathrm{1}} ^{\left(\mathrm{1}\right)} −\sigma_{{n}} ^{\left(\mathrm{1}\right)} \:\mathrm{below} \\ $$$$\mathrm{continue}\:\mathrm{until}\:\mathrm{you}\:\mathrm{get}\:\mathrm{a}\:\mathrm{constant}\:\left(\sigma_{{n}} ^{\left({k}\right)} =\sigma_{{n}+\mathrm{1}} ^{\left({k}\right)} \right) \\ $$$${s}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{5}\:\:\:\:\:\mathrm{14}\:\:\:\:\:\mathrm{30}\:\:\:\:\:\mathrm{55} \\ $$$$\sigma^{\left(\mathrm{1}\right)} \:\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\mathrm{9}\:\:\:\:\:\:\mathrm{16}\:\:\:\:\:\:\mathrm{25} \\ $$$$\sigma^{\left(\mathrm{2}\right)} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\:\:\:\:\:\:\mathrm{7}\:\:\:\:\:\:\:\mathrm{9} \\ $$$$\sigma^{\left(\mathrm{3}\right)} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{2} \\ $$$${k}=\mathrm{3}\:\Rightarrow\:\mathrm{we}'\mathrm{ll}\:\mathrm{get}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree} \\ $$$${s}_{{n}} ={c}_{\mathrm{3}} {n}^{\mathrm{3}} +{c}_{\mathrm{2}} {n}^{\mathrm{2}} +{c}_{\mathrm{1}} {n}+{c}_{\mathrm{0}} \\ $$$${k}+\mathrm{1}=\mathrm{4}\:\mathrm{constants}\:\Rightarrow\:\mathrm{we}\:\mathrm{need}\:\mathrm{4}\:\mathrm{equations} \\ $$$$\mathrm{1}={c}_{\mathrm{3}} +{c}_{\mathrm{2}} +{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{5}=\mathrm{8}{c}_{\mathrm{3}} +\mathrm{4}{c}_{\mathrm{2}} +\mathrm{2}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{14}=\mathrm{27}{c}_{\mathrm{3}} +\mathrm{9}{c}_{\mathrm{2}} +\mathrm{3}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{30}=\mathrm{64}{c}_{\mathrm{3}} +\mathrm{16}{c}_{\mathrm{2}} +\mathrm{4}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{system}\:\Rightarrow \\ $$$${c}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}}\wedge{c}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\wedge{c}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{6}}\wedge{c}_{\mathrm{0}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${s}_{{n}} =\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$
Commented by Rasheed.Sindhi last updated on 16/Jan/22
$$\mathbb{G}_{\:\:\mathbb{S}\:\:\underset{!} {\mathbb{I}}\:\:\mathbb{R}\:} ^{\:\:\mathbb{R}^{\:\mathbb{E}\:} \mathbb{A}} \mathbb{T} \\ $$
Answered by ajfour last updated on 16/Jan/22
$$\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\left({r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)..\left({r}+{m}\right) \\ $$$$\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{m}\right)\left({n}+{m}+\mathrm{1}\right)}{{m}+\mathrm{2}} \\ $$$${here}\:\:\:\Sigma{r}^{\mathrm{2}} =\Sigma{r}\left({r}+\mathrm{1}\right)−\Sigma{r} \\ $$$$\:\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{3}}−\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{6}}\left\{\mathrm{2}\left({n}+\mathrm{2}\right)−\mathrm{3}\right\} \\ $$$$\Rightarrow\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$