Menu Close

Question-164206




Question Number 164206 by abdurehime last updated on 15/Jan/22
Commented by abdurehime last updated on 15/Jan/22
what is the value???
whatisthevalue???
Commented by mr W last updated on 15/Jan/22
1^2 +2^2 +...+n^2 =((n(n+1)(2n+1))/6)
12+22++n2=n(n+1)(2n+1)6
Commented by abdurehime last updated on 15/Jan/22
how did you get?? show me the process please?
howdidyouget??showmetheprocessplease?
Commented by cortano1 last updated on 15/Jan/22
consider (k+1)^2 −k^2 = 2k+1   Σ_(k=1) ^n ((k+1)^2 −k^2 ) = Σ_(k=1) ^n (2k+1)   (n+1)^2 −1 = 2Σ_(k=1) ^n k+n   n^2 +n =2 Σ_(k=1) ^n k ⇒Σ_(k=1) ^n k = ((n^2 +n)/2)     (k+1)^3 −k^3 = 3k^2 +3k+1   Σ_(k=1) ^n ((k+1)^3 −k^3 )= 3Σ_(k=1) ^n +3Σ_(k=1) ^n +n   (n+1)^3 −1=3Σ_(k=1) ^n k^2 +((3n^2 +3n)/2) +n   3Σ_(k=1) ^n k^2  = n^3 +3n^2 +3n−(((3n^2 +5n)/2))         Σ_(k=1) ^n k^2  = ((2n^3 +3n^2 +n)/6) =((n(2n+1)(n+1))/6)
consider(k+1)2k2=2k+1nk=1((k+1)2k2)=nk=1(2k+1)(n+1)21=2nk=1k+nn2+n=2nk=1knk=1k=n2+n2(k+1)3k3=3k2+3k+1nk=1((k+1)3k3)=3nk=1+3nk=1+n(n+1)31=3nk=1k2+3n2+3n2+n3nk=1k2=n3+3n2+3n(3n2+5n2)nk=1k2=2n3+3n2+n6=n(2n+1)(n+1)6
Commented by bobhans last updated on 16/Jan/22
 nice !
nice!
Answered by MJS_new last updated on 15/Jan/22
one possible process:  s_n =Σ_(j=1) ^n j^2   make a list of the first few s_n   write σ_n ^((1)) =s_(n+1) −s_n  below  write σ_n ^((2)) =σ_(n+1) ^((1)) −σ_n ^((1))  below  continue until you get a constant (σ_n ^((k)) =σ_(n+1) ^((k)) )  s          1     5     14     30     55  σ^((1))          4     9      16      25  σ^((2))               5       7       9  σ^((3))                    2       2  k=3 ⇒ we′ll get a polynome of 3^(rd)  degree  s_n =c_3 n^3 +c_2 n^2 +c_1 n+c_0   k+1=4 constants ⇒ we need 4 equations  1=c_3 +c_2 +c_1 +c_0   5=8c_3 +4c_2 +2c_1 +c_0   14=27c_3 +9c_2 +3c_1 +c_0   30=64c_3 +16c_2 +4c_1 +c_0   solve this system ⇒  c_3 =(1/3)∧c_2 =(1/2)∧c_1 =(1/6)∧c_0 =0  ⇒  s_n =(n^3 /3)+(n^2 /2)+(n/6)=((n(n+1)(2n+1))/6)
onepossibleprocess:sn=nj=1j2makealistofthefirstfewsnwriteσn(1)=sn+1snbelowwriteσn(2)=σn+1(1)σn(1)belowcontinueuntilyougetaconstant(σn(k)=σn+1(k))s15143055σ(1)491625σ(2)579σ(3)22k=3wellgetapolynomeof3rddegreesn=c3n3+c2n2+c1n+c0k+1=4constantsweneed4equations1=c3+c2+c1+c05=8c3+4c2+2c1+c014=27c3+9c2+3c1+c030=64c3+16c2+4c1+c0solvethissystemc3=13c2=12c1=16c0=0sn=n33+n22+n6=n(n+1)(2n+1)6
Commented by Rasheed.Sindhi last updated on 16/Jan/22
G_(  S  I_(!)   R ) ^(  R^( E ) A) T
GSI!RREAT
Answered by ajfour last updated on 16/Jan/22
  Σ_(r=1) ^n r(r+1)(r+2)..(r+m)   =((n(n+1)(n+2)...(n+m)(n+m+1))/(m+2))  here   Σr^2 =Σr(r+1)−Σr        =((n(n+1)(n+2))/3)−((n(n+1))/2)       =((n(n+1))/6){2(n+2)−3}  ⇒  Σ_(r=1) ^n r^2 =((n(n+1)(2n+1))/6)
nr=1r(r+1)(r+2)..(r+m)=n(n+1)(n+2)(n+m)(n+m+1)m+2hereΣr2=Σr(r+1)Σr=n(n+1)(n+2)3n(n+1)2=n(n+1)6{2(n+2)3}nr=1r2=n(n+1)(2n+1)6

Leave a Reply

Your email address will not be published. Required fields are marked *