Question Number 164210 by HongKing last updated on 15/Jan/22
Answered by mr W last updated on 15/Jan/22
Commented by mr W last updated on 15/Jan/22
$${see}\:{Q}\mathrm{163522} \\ $$$$ \\ $$$$\frac{{UE}}{{BU}}=\frac{{pq}}{{px}\left({q}+{qy}\right)}\:\Rightarrow\frac{{BU}}{{UE}}={x}\left({y}+\mathrm{1}\right) \\ $$$$\frac{{FX}}{{XE}}=\frac{{BU}×{r}}{{UE}\left({r}+{rz}\right)}\Rightarrow\frac{{FX}}{{XE}}=\frac{{BU}}{{UE}\left(\mathrm{1}+{z}\right)} \\ $$$$\frac{{FX}}{{XE}}×\frac{{BU}}{{UE}}=\left(\frac{{BU}}{{UE}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\left({z}+\mathrm{1}\right)}=\frac{{x}^{\mathrm{2}} \left({y}+\mathrm{1}\right)^{\mathrm{2}} }{\left({z}+\mathrm{1}\right)}\:\checkmark \\ $$
Commented by HongKing last updated on 15/Jan/22
$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$
Commented by Tawa11 last updated on 15/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$