Menu Close

Question-164210




Question Number 164210 by HongKing last updated on 15/Jan/22
Answered by mr W last updated on 15/Jan/22
Commented by mr W last updated on 15/Jan/22
see Q163522    ((UE)/(BU))=((pq)/(px(q+qy))) ⇒((BU)/(UE))=x(y+1)  ((FX)/(XE))=((BU×r)/(UE(r+rz)))⇒((FX)/(XE))=((BU)/(UE(1+z)))  ((FX)/(XE))×((BU)/(UE))=(((BU)/(UE)))^2 ×(1/((z+1)))=((x^2 (y+1)^2 )/((z+1))) ✓
$${see}\:{Q}\mathrm{163522} \\ $$$$ \\ $$$$\frac{{UE}}{{BU}}=\frac{{pq}}{{px}\left({q}+{qy}\right)}\:\Rightarrow\frac{{BU}}{{UE}}={x}\left({y}+\mathrm{1}\right) \\ $$$$\frac{{FX}}{{XE}}=\frac{{BU}×{r}}{{UE}\left({r}+{rz}\right)}\Rightarrow\frac{{FX}}{{XE}}=\frac{{BU}}{{UE}\left(\mathrm{1}+{z}\right)} \\ $$$$\frac{{FX}}{{XE}}×\frac{{BU}}{{UE}}=\left(\frac{{BU}}{{UE}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\left({z}+\mathrm{1}\right)}=\frac{{x}^{\mathrm{2}} \left({y}+\mathrm{1}\right)^{\mathrm{2}} }{\left({z}+\mathrm{1}\right)}\:\checkmark \\ $$
Commented by HongKing last updated on 15/Jan/22
perfect my dear Sir thank you so much
$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$
Commented by Tawa11 last updated on 15/Jan/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *