Menu Close

Question-164227




Question Number 164227 by SANOGO last updated on 15/Jan/22
Answered by TheSupreme last updated on 15/Jan/22
 determinant ((4,6,0),((−3),(−5),0),((−3),(−6),(−5)))−λ [(1,0,0),(0,1,0),(0,0,1) ]{ determinant ((x),(y),(z))}={ determinant ((0),(0),(0))}  det(A−λI)=0  [(4−λ)(−5−λ)+18](−5−λ)=0  [−20−4λ+5λ+λ^2 +18](−5−λ)=0  (λ^2 +λ−2)(−5−λ)=0  −(λ+5)(λ−1)(λ+2)=0  {x}=c_1 {w_1 }e^(4t) +c_2 {w_2 }e^t +c_3 {w_3 }e^(−2t)     λ=1  [ determinant ((3,6,0),((−3),(−6),0),((−3),(−6),(−6)))]{w}={0}  3w_x +6w_y =0  −6w_z =0   w_2 ={1,−2,0}    λ=−2  [ determinant ((6,6,0),((−3),(−3),0),((−3),(−6),(−3)))]{w}={0}  w_x +w_y =0  w_z =0  w_3 ={1,−1,0}
|460350365|λ[100010001]{xyz}={000}det(AλI)=0[(4λ)(5λ)+18](5λ)=0[204λ+5λ+λ2+18](5λ)=0(λ2+λ2)(5λ)=0(λ+5)(λ1)(λ+2)=0{x}=c1{w1}e4t+c2{w2}et+c3{w3}e2tλ=1[360360366]{w}={0}3wx+6wy=06wz=0w2={1,2,0}λ=2[660330363]{w}={0}wx+wy=0wz=0w3={1,1,0}
Answered by pluton last updated on 15/Jan/22
posons X(t)= (( determinant (((x(t))),((y(t))))),((z(t))) )((dX(t))/dt)=AX  ou A= [((4          6           0)),((−3  −5         0)) ]il vient  que  ((dX(t))/X)=Adt  donc X(t)=X_o e^(tA)  ou   X_0 = (( determinant (((x(o))),((y(0))))),((z(0))) )                  [−3      −6     −5]
posonsX(t)=(x(t)y(t)z(t))dX(t)dt=AXouA=[460350]ilvientquedX(t)X=AdtdoncX(t)=XoetAouX0=(x(o)y(0)z(0))[365]

Leave a Reply

Your email address will not be published. Required fields are marked *