Menu Close

Question-164237




Question Number 164237 by DAVONG last updated on 15/Jan/22
Answered by mathmax by abdo last updated on 15/Jan/22
=lim_(x→−1)     ((nx^(n−1) −n)/(2(x+1))) =lim_(x→−1) ((n(n−1)x^(n−2) )/2)=((n(n−1))/2)  (hospital 2times)
$$=\mathrm{lim}_{\mathrm{x}\rightarrow−\mathrm{1}} \:\:\:\:\frac{\mathrm{nx}^{\mathrm{n}−\mathrm{1}} −\mathrm{n}}{\mathrm{2}\left(\mathrm{x}+\mathrm{1}\right)}\:=\mathrm{lim}_{\mathrm{x}\rightarrow−\mathrm{1}} \frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{n}−\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\left(\mathrm{hospital}\:\mathrm{2times}\right) \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 15/Jan/22
l=((n(n−1))/2)(−1)^(n−2) =−((n(n−1))/2)
$$\mathrm{l}=\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}}\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{2}} =−\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *