Menu Close

Question-164310




Question Number 164310 by ZiYangLee last updated on 16/Jan/22
Answered by Rasheed.Sindhi last updated on 16/Jan/22
Let (√(a^2 +b^2 +ab)) =c  Obviously c≥a & c≥b  So the greater angle is opposite to c  Now, c^2 =a^2 +b^2 +ab=a^2 +b^2 −2ab(−(1/2))   c^2 =a^2 +b^2 −2abcos(120°)  ⇒Opposite angle to c is 120°  i-e the greatest angle is 120°   determinant (((   c^2 =a^2 +b^2 −2ab cosγ_(   (γ is opposite angle to c)) ^(Cosine law               )  )))
$${Let}\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}}\:={c} \\ $$$${Obviously}\:{c}\geqslant{a}\:\&\:{c}\geqslant{b} \\ $$$${So}\:{the}\:{greater}\:{angle}\:{is}\:{opposite}\:{to}\:{c} \\ $$$${Now},\:{c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:{c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\left(\mathrm{120}°\right) \\ $$$$\Rightarrow{Opposite}\:{angle}\:{to}\:{c}\:{is}\:\mathrm{120}° \\ $$$${i}-{e}\:{the}\:{greatest}\:{angle}\:{is}\:\mathrm{120}° \\ $$$$\begin{array}{|c|}{\:\:\:\underset{\:\:\:\left(\gamma\:{is}\:{opposite}\:{angle}\:{to}\:{c}\right)} {\overset{\boldsymbol{{Cosine}}\:\boldsymbol{{law}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {{c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\gamma}}\:}\\\hline\end{array}\: \\ $$
Commented by mr W last updated on 16/Jan/22
nicely combined!
$${nicely}\:{combined}! \\ $$
Commented by Rasheed.Sindhi last updated on 16/Jan/22
Thanks sir!
$$\mathcal{T}{hanks}\:\boldsymbol{{sir}}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *