Menu Close

Question-164434




Question Number 164434 by mathlove last updated on 17/Jan/22
Answered by TheSupreme last updated on 17/Jan/22
2f(sin(x))−f(cos(x))=3x  2f(cos(x))−f(sin(x))=3((π/2)−x)  3f(sin(x))=6x−3((π/2)−x)  f(sin(x))=9x−(3/2)π  f(t)=9arcsin(x)−(3/2)π+2kπ  f(tan(x))=9arcsin(tan(x))−(3/2)π+2kπ  f(sin(2x))=8x−(3/2)π+2kπ
$$\mathrm{2}{f}\left({sin}\left({x}\right)\right)−{f}\left({cos}\left({x}\right)\right)=\mathrm{3}{x} \\ $$$$\mathrm{2}{f}\left({cos}\left({x}\right)\right)−{f}\left({sin}\left({x}\right)\right)=\mathrm{3}\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$$\mathrm{3}{f}\left({sin}\left({x}\right)\right)=\mathrm{6}{x}−\mathrm{3}\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$${f}\left({sin}\left({x}\right)\right)=\mathrm{9}{x}−\frac{\mathrm{3}}{\mathrm{2}}\pi \\ $$$${f}\left({t}\right)=\mathrm{9}{arcsin}\left({x}\right)−\frac{\mathrm{3}}{\mathrm{2}}\pi+\mathrm{2}{k}\pi \\ $$$${f}\left({tan}\left({x}\right)\right)=\mathrm{9}{arcsin}\left({tan}\left({x}\right)\right)−\frac{\mathrm{3}}{\mathrm{2}}\pi+\mathrm{2}{k}\pi \\ $$$${f}\left({sin}\left(\mathrm{2}{x}\right)\right)=\mathrm{8}{x}−\frac{\mathrm{3}}{\mathrm{2}}\pi+\mathrm{2}{k}\pi \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *