Menu Close

Question-164546




Question Number 164546 by mathls last updated on 18/Jan/22
Commented by mathls last updated on 18/Jan/22
Dom(g)=?
$${Dom}\left({g}\right)=? \\ $$
Commented by mkam last updated on 18/Jan/22
D_(g(z))  = −2 < z < 2
$$\boldsymbol{{D}}_{\boldsymbol{{g}}\left(\boldsymbol{{z}}\right)} \:=\:−\mathrm{2}\:<\:\boldsymbol{{z}}\:<\:\mathrm{2} \\ $$
Commented by mathls last updated on 19/Jan/22
no find Dom(g)
$${no}\:{find}\:{Dom}\left({g}\right) \\ $$
Commented by mkam last updated on 19/Jan/22
D_(g(z))  = Dom(g)
$$\boldsymbol{{D}}_{\boldsymbol{{g}}\left(\boldsymbol{{z}}\right)} \:=\:\boldsymbol{{Dom}}\left(\boldsymbol{{g}}\right)\: \\ $$
Answered by mathmax by abdo last updated on 19/Jan/22
∣z∣<2  if z from C   and −2<z<2 if z is real  z=x+iy →∣z∣<2 ⇔(√(x^2 +y^2 ))<2 ⇒x^2  +y^2 <4....
$$\mid\mathrm{z}\mid<\mathrm{2}\:\:\mathrm{if}\:\mathrm{z}\:\mathrm{from}\:\mathrm{C}\:\:\:\mathrm{and}\:−\mathrm{2}<\mathrm{z}<\mathrm{2}\:\mathrm{if}\:\mathrm{z}\:\mathrm{is}\:\mathrm{real} \\ $$$$\mathrm{z}=\mathrm{x}+\mathrm{iy}\:\rightarrow\mid\mathrm{z}\mid<\mathrm{2}\:\Leftrightarrow\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }<\mathrm{2}\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} <\mathrm{4}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *