Menu Close

Question-164549




Question Number 164549 by wwww last updated on 18/Jan/22
Answered by alephzero last updated on 18/Jan/22
(a) a−(1/a)=4  ((a^2 −1)/a) = 4  ((a^2 −1−4a)/a) = 0  ⇒ a^2 −4a−1 = 0  a = ((4 ± (√(16+4)))/2) = ((4 ± (√(20)))/2) = ((4 ± 2(√5))/2) =  = 2 ± (√5)  Let a+(1/a) =A  ⇒ A_1  = 2+(√5)+(1/(2+(√5)))=2+(√5)−2+(√5) =  = 2(√5)  A_2  = 2−(√5)+(1/(2−(√5))) =2−(√5)−2−(√5) =  = −2(√5)  ⇒ a+(1/a) = ±2(√5)  (b) a^3 +(1/a^3 ) = B  a_1 ^3  = 38+17(√5) ∧ a_2 ^3  = 38−17(√5)  ⇒ B_1  = 38+17(√5)+(1/(38+17(√5))) = 34(√5)  B_2  = 38−17(√5)+(1/(38−17(√5))) = −34(√5)
(a)a1a=4a21a=4a214aa=0a24a1=0a=4±16+42=4±202=4±252==2±5Leta+1a=AA1=2+5+12+5=2+52+5==25A2=25+125=2525==25a+1a=±25(b)a3+1a3=Ba13=38+175a23=38175B1=38+175+138+175=345B2=38175+138175=345
Answered by Rasheed.Sindhi last updated on 18/Jan/22
a−(1/a)=4  (a):  (a−(1/a)=4)^2   a^2 +(1/a^2 )−2=16  (a+(1/a))^2 =20  a+(1/a)=±2(√5)  (b):(a+(1/a))^3 =(±2(√5))^3   a^3 +(1/a^3 )+3(a+(1/a))=±40(√5)  a^3 +(1/a^3 )+3(±2(√5))=±40(√5)  a^3 +(1/a^3 )=±40(√5) ∓6(√5) =±34(√5)  (c):( a−(1/a)=4)^3           a^3 −(1/a^3 )−3(a−(1/a))=64          a^3 −(1/a^3 )−3(4)=64        a^3 −(1/a^3 )=76      (a^3 −(1/a^3 ))(a^3 +(1/a^3 ))=(76)(±34(√5))      a^6 −(1/a^6 )=±2584(√5)
a1a=4(a):(a1a=4)2a2+1a22=16(a+1a)2=20a+1a=±25(b):(a+1a)3=(±25)3a3+1a3+3(a+1a)=±405a3+1a3+3(±25)=±405a3+1a3=±40565=±345(c):(a1a=4)3a31a33(a1a)=64a31a33(4)=64a31a3=76(a31a3)(a3+1a3)=(76)(±345)a61a6=±25845

Leave a Reply

Your email address will not be published. Required fields are marked *